調405-(3)-3

第405回地震調查委員会資料

〈目 次〉

٠	広帯域地震計を用いたモーメントテンソル解析結果(2024年8月01日-8月31日) ・・・・・	$\cdot \cdot 2$
٠	紀伊半島・東海地域の深部低周波微動活動状況(2024年8月)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
٠	四国の深部低周波微動活動状況(2024年8月)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
٠	紀伊半島北部の短期的スロースリップ活動状況(2024年8月)・・・・・・・・・・・・・・・・	16
٠	日向灘及びその周辺における超低周波地震活動(2024年8月1日-9月3日)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
٠	2024年8月8日日向灘の地震による高周波エネルギー輻射幅・・・・・・・・・・・・・・・・・・・・	18
٠	N-net・DONET水圧データから推定した2024年8月8日日向灘の地震による津波の波源分布・・・	19
٠	令和6年能登半島地震の震源過程(暫定)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20

令和6年9月10日

広帯域地震計を用いたモーメントテンソル解析結果 (2024年08月01日-08月31日)

期間中のイベント数:111

国立研究開発法人 防災科学技術研究所

・北淮	•北海道地方				
11)	択捉島付近	(08/02 22:50 Mw4.0 H_5km VR62.25/3) 北西一南東方向に圧縮軸を持つ型			
20)	釧路沖	(08/04 22:19 Mw4.7 H_71km VR93.10/3) 西北西一東南東方向に圧縮軸を持つ型			
22)	択捉島付近	(08/05 02:00 Mw4.1 H_5km VR61.71/3) 北西一南東方向に圧縮軸を持つ型			
26)	北海道南西沖	(08/08 21:49 Mw5.0 H195km VR89.03/3) 東西方向に圧縮軸を持つ型			
37)	オホーツク海南部	(08/10 12:28 Mw6.5 H440km VR85.57/3) 北西一南東方向に圧縮軸を持つ型			
44)	十勝沖	(08/12 14:03 Mw4.0 H_32km VR69.51/3) 東西圧縮の逆断層			
47)	根室半島南東沖	(08/13 03:47 Mw4.2 H_59km VR93.02/3) 西北西一東南東圧縮の逆断層			
67)	国後島付近	(08/17 00:57 Mw4.3 H_86km VR91.97/3) 東北東一西南西方向に圧縮軸を持つ型			
79)	釧路沖	(08/20 08:02 Mw4.6 H107km VR93.08/3) 北北西一南南東方向に伸長軸を持つ型			
80)	択捉島付近	(08/20 17:24 Mw4.9 H_86km VR86.37/3) 西北西一東南東方向に圧縮軸を持つ型			
93)	根室半島南東沖	(08/23 19:06 Mw4.2 H_20km VR69.48/3) 東西圧縮の横ずれ断層			
・東វ	比地方				
4)	福島県沖	(08/01 23:51 Mw4.2 H_23km VR89.95/3) 東西方向に伸長軸を持つ型			
12)	三陸沖	(08/03 07:16 Mw4.5 H_17km VR86.76/3) 西北西一東南東圧縮の逆断層			
15)	三陸沖	(08/03 20:05 Mw4.2 H_17km VR87.49/3) 西北西一東南東圧縮の逆断層			
17)	三陸沖	(08/04 16:14 Mw4.0 H_17km VR75.67/3) 西北西一東南東圧縮の逆断層			
41)	福島県沖	(08/11 09:38 Mw4.2 H_65km VR91.51/3) 東西圧縮の逆断層			
70)	宮城県沖	(08/17 09:33 Mw4.5 H_50km VR93.03/3) 西北西一東南東圧縮の逆断層			
·関東	ē•中部地方				
3)	房総半島南東沖	(08/01 14:54 Mw4.1 H_8km VR67.89/3) 北西一南東圧縮の逆断層			
18)	岐阜県飛騨地方	(08/04 20:11 Mw4.6 H260km VR88.16/3) 北北東一南南西伸張の正断層			
<u>34</u>)	神奈川県西部	(08/09 19:57 Mw5.0 H_11km VR84.15/3) 北北西一南南東圧縮の逆断層			
48)	茨城県沖	(08/13 05:17 Mw4.1 H_20km VR91.89/3) 西北西一東南東圧縮の逆断層			
51)	八丈島東方沖	(08/14 02:37 Mw4.5 H_5km VR71.96/3) 西北西一東南東伸張の正断層			
61)	神奈川県西部	(08/15 20:20 Mw4.1 H_11km VR82.01/3) 北北西一南南東圧縮の逆断層			
<u>71)</u>	八丈島東方沖	(08/17 15:32 Mw5.1 H_8km VR71.12/3) 東北東一西南西伸張の正断層			
77)	茨城県北部	(08/19 00:48 Mw4.5 H_5km VR92.53/3) 北東一南西伸張の正断層			
78)	茨城県北部	(08/19 00:50 Mw4.8 H_5km VR93.14/3) 東北東一西南西伸張の正断層			
95)	茨城県南部	(08/23 21:00 Mw4.2 H_56km VR89.22/3) 東西圧縮の逆断層			
104)	神奈川県東部	(08/28 02:05 Mw4.1 H_38km VR77.62/3) 北西一南東圧縮の逆断層			
•小笠原地方					
8)	鳥島東方沖	(08/02 17:16 Mw4.0 H_26km VR82.53/3) 南北方向に圧縮軸を持つ型			
10)	鳥島東方沖	(08/02 20:05 Mw4.1 H_38km VR81.35/3) 南北圧縮の逆断層			
13)	鳥島東方沖	(08/03 17:33 Mw4.2 H_32km VR71.83/3) 南北圧縮の逆断層			
35)	八丈島近海	(08/10 00:10 Mw4.6 H_44km VR74.26/3) 東西圧縮の横ずれ断層			
92)	鳥島近海	(08/23 18:17 Mw4.3 H_5km VR59.35/3) 東北東一西南西伸張の正断層			

105)	鳥島東方沖	(08/28 12:38 Mw4.6 H_23km VR75.53/3) 西北西一東南東方向に圧縮軸を持つ型			
109)	鳥島近海	(08/30 11:49 Mw4.8 H480km VR50.96/3) 南北伸張の正断層			
·近畿地方					
66)	兵庫県北方沖	(08/16 22:06 Mw4.1 H_8km VR93.47/3) 西北西一東南東方向に圧縮軸を持つ型			
・中国・四国地方					
97)	室戸岬沖	(08/24 09:32 Mw4.3 H_8km VR85.64/3) 北北西一南南東圧縮の横ずれ断層			
・九州地方					
<u>25</u>)	日向灘	<u>(08/08 16:42 Mw7.0 H_35km VR79.57/3) 西北西一東南東圧縮の逆断層</u>			
27)	日向灘	(08/09 01:26 Mw4.1 H_32km VR57.50/3) 北西一南東圧縮の逆断層			
28)	日向灘	(08/09 03:48 Mw4.3 H_29km VR67.08/3) 北西一南東圧縮の逆断層			
<u>29</u>)	日向灘	<u>(08/09 04:23 Mw5.2 H_32km VR77.21/3) 北西一南東圧縮の逆断層</u>			
30)	日向灘	(08/09 04:47 Mw4.2 H_32km VR74.39/3) 西北西一東南東圧縮の逆断層			
32)	日向灘	(08/09 17:47 Mw4.0 H_23km VR57.83/3) 西北西一東南東圧縮の逆断層			
33)	日向灘	(08/09 19:14 Mw4.5 H_26km VR65.79/3) 西北西一東南東圧縮の逆断層			
39)	日向灘	(08/10 21:15 Mw4.1 H_32km VR62.31/3) 西北西一東南東方向に圧縮軸を持つ型			
40)	日向灘	(08/11 07:42 Mw4.5 H_32km VR78.24/3) 西北西一東南東圧縮の逆断層			
43)	日向灘	(08/12 06:48 Mw4.2 H_26km VR68.14/3) 北西一南東圧縮の逆断層			
57)	種子島近海	(08/15 13:50 Mw4.3 H_26km VR59.71/3) 西北西一東南東圧縮の逆断層			
88)	種子島近海	(08/22 10:51 Mw4.2 H_32km VR76.31/3) 西北西一東南東圧縮の逆断層			
111)	日向灘	(08/31 22:04 Mw4.7 H_32km VR78.54/3) 北西一南東圧縮の逆断層			
・沖紛	黽地方				
5)	沖縄本島近海	(08/02 04:16 Mw4.1 H_5km VR91.77/3) 北西一南東伸張の正断層			
6)	台湾付近	(08/02 08:43 Mw4.1 H_32km VR59.60/2) 北北西一南南東圧縮の逆断層			
19)	沖縄本島近海	(08/04 20:31 Mw4.0 H_5km VR65.09/3) 北西一南東方向に圧縮軸を持つ型			
38)	台湾付近	(08/10 17:49 Mw4.1 H_32km VR76.98/2) 北北西一南南東方向に圧縮軸を持つ型			
42)	台湾付近	(08/11 11:47 Mw4.0 H_44km VR70.66/2) 東西方向に圧縮軸を持つ型			
45)	東シナ海	(08/12 19:36 Mw4.0 H_77km VR86.82/3) 南北圧縮の横ずれ断層			
49)	沖縄本島近海	(08/13 10:16 Mw4.0 H_92km VR76.03/3) 東西伸張の正断層			
56)	台湾付近	(08/14 20:22 Mw4.1 H_38km VR77.57/3) 東西方向に圧縮軸を持つ型			
<u>59</u>)	台湾付近	(08/15 18:06 Mw5.3 H_5km VR85.45/3) 東北東一西南西方向に圧縮軸を持つ型			
60)	台湾付近	(08/15 18:33 Mw4.3 H_8km VR74.29/2) 北東一南西方向に圧縮軸を持つ型			
63)	与那国島近海	(08/16 00:17 Mw4.3 H_29km VR91.68/2) 東北東一西南西圧縮の横ずれ断層			
64)	台湾付近	(08/16 08:35 Mw6.0 H_8km VR68.77/3) 西北西一東南東圧縮の逆断層			
65)	台湾付近	(08/16 14:29 Mw4.0 H_8km VR79.70/2) 西北西一東南東圧縮の逆断層			
69)	台湾付近	(08/17 07:19 Mw4.4 H_26km VR69.00/3) 北北西一南南東方向に圧縮軸を持つ型			
72)	台湾付近	(08/17 22:10 Mw4.6 H_32km VR67.94/3) 東西圧縮の横ずれ断層			
73)	台湾付近	(08/18 03:36 Mw4.1 H_20km VR80.96/2) 北北西一南南東圧縮の逆断層			
83)	台湾付近	(08/21 03:53 Mw4.3 H_11km VR71.68/3) 北北東一南南西方向に圧縮軸を持つ型			
90)	台湾付近	(08/22 16:37 Mw4.1 H_38km VR80.02/2) 南北方向に圧縮軸を持つ型			
91)	台湾付近	(08/22 20:14 Mw4.2 H_32km VR64.47/2) 北西一南東方向に圧縮軸を持つ型			
101)	台湾付近	(08/27 00:28 Mw4.3 H_32km VR90.59/2) 南北方向に圧縮軸を持つ型			

*Mw4.0以上をリストアップ.

**下線部はMw5.0以上を示す.

***" VR"欄の"/"の後の数は解析に使用した観測点数を示す.

****断層タイプの分類はFrohlich [1992]による.

謝辞 地形データは海上保安庁のものを使用させて頂きました. 記して感謝いたします

^{10. 00/02 20.03} MW4.1 H_30KIII VK01.3 3

Hokkaido Aug 01,2024–Aug 31,2024(JST)

Tohoku Aug 01,2024–Aug 15,2024(JST)

Tohoku Aug 16,2024–Aug 31,2024(JST)

Kanto–Chubu Aug 01,2024–Aug 15,2024(JST)

Kanto-Chubu

Aug 16,2024-Aug 31,2024(JST)

Kinki-Chugoku-Shikoku

Aug 01,2024-Aug 31,2024(JST)

Kyushu Aug 01,2024-Aug 31,2024(JST)

25. 08/08 16:42 Mw7.0 H_35km VR79.6 27. 08/09 01:26 Mw4.1 H_32km VR57.5 28. 08/09 03:48 Mw4.3 H_29km VR67.1 29. 08/09 04:23 Mw5.2 H_32km VR77.2 30. 08/09 04:47 Mw4.2 H_32km VR74.4 31. 08/09 05:01 Mw3.9 H_23km VR52.1

74. 08/18 15:33 Mw3.9 H_32km VR69.6 85. 08/21 23:33 Mw3.7 H_11km VR61.6 88. 08/22 10:51 Mw4.2 H_32km VR76.3 97. 08/24 09:32 Mw4.3 H_8km VR85.6 111. 08/31 22:04 Mw4.7 H_32km VR78.5

Okinawa Aug 01,2024–Aug 31,2024(JST)

図1. 紀伊半島・東海地域における 2004 年 9 月~2024 年 9 月 3 日までの深部低周波微動の時空間分布(上図). 赤丸はエンベロープ相関・振幅ハイブリッド法(Maeda and Obara, 2009) およびクラスタ処理(Obara et al., 2010) に よって 1 時間毎に自動処理された微動分布の重心である.青菱形は周期 20 秒に卓越する超低周波地震(Ito et al., 2007)である.黄緑色の太線はこれまでに検出された短期的スロースリップイベント(SSE)を示す.下図は 2024 年 8 月を中心とした期間の拡大図である.8月5~17日頃には奈良県南部から愛知県西部において,活発な微動 活動がみられた.この活動は奈良県南部で開始し,北東方向への活動域の移動がみられた.8月8日16:42頃に 日向灘で発生した Mw7.0(F-net 解)の地震の後,三重県中部においても活動が開始した.その後,さらに北東 方向への活動域の移動がみられ,13日頃には伊勢湾付近まで達した.この活動に際し,傾斜変動から短期的 SSE の断層モデルも推定されている.8月13~19日頃には長野県南部から愛知県東部で,やや活発な活動がみられた. この活動は長野・愛知県境付近で開始した後,主に北東方向への活動域の移動がみられ,18日以降は愛知県東部 で活動がみられた.その他の活動として,8月3~4日頃には和歌山県中部において,ごく小規模な活動がみられた.

図2. 各期間に発生した微動(赤丸)および深部超低周波地震(青菱形)の 分布. 灰丸は,図1の拡大図で示した期間における微動分布を示す.

防災科学技術研究所資料

図1.四国における2004年9月~2024年9月3日までの深部低周波微動の時空間分布(上図).赤丸はエンベロープ相関・振幅ハイブリッド法(Maeda and Obara, 2009)およびクラスタ処理(Obara et al., 2010)によって1時間毎に自動処理された微動分布の重心である.青菱形は周期20秒に卓越する超低周波地震(Ito et al., 2007)である.黄緑色太線は、これまでに検出された短期的スロースリップイベント(SSE)を示す.下図は2024年8月を中心とした期間の拡大図である.8月16~19日頃には愛媛県東部において、やや活発な微動活動がみられた.この活動において、やや活発な活動がみられた.この活動は豊後水道で開始し、東西両方向への活動域の拡大がみられた.その他の活動として、8月3日頃には愛媛・香川・徳島県境付近において、8月6~8日頃には香川・徳島県境付近において、8月9~10日頃には愛媛県東部において、8月10~11日頃には愛媛県西部において、それぞれごく小規模な活動がみられた.

図2. 各期間に発生した微動(赤丸)および超低周波地震(青菱形)の分布. 灰丸は、図1の拡大図で示した期間における微動分布を示す.

防災科学技術研究所資料

紀伊半島北部の短期的スロースリップ活動状況(2024年8月)

図1:2024年7月23日~8月22日の傾斜時系列.上方向への変化が北・東下が りの傾斜変動を表し, BAYTAP-G により潮汐・気圧応答成分を除去した.8月8 日~13日の傾斜変化ベクトルを図2に示す.紀伊半島北部での微動活動度・気象 庁津観測点の気圧・雨量をあわせて示す.

層モデル(赤矩形・矢印), モデルから計算される傾斜変化ベクトル(白抜き矢印)を示す.1 時間ごとの 微動エネルギーの重心位置(橙丸),深部超低周波地震(茶星印)もあわせて示す.すべり角はプレート相 対運動方向に固定している. 謝辞

気象庁の WEB ページで公開されている気象データを使用させて頂きました. 記して感謝いたします.

日向灘及びその周辺域における超低周波地震活動(2024年8月1日-9月3日) M ^{防災科研}

第2図.第1図と同じ期間内に検出された超低周波イベントの時空間分布.超低周波イベントを赤色の
 点で示す.(a)および(b)に緯度分布の,(c)および(d)に経度分布の時間変化をそれぞれ示す.また,
 (a)および(c)に2021年1月1日以降,(b)および(d)には2024年8月1日以降の分布をそれぞれ示す.

防災科学技術研究所資料

相関解析 [Asano et al. (2015)] によって検出された超低周 波イベントの震央分布.検出イベントを防災科研の手動また は自動験測震源と照合して通常の地震を除去した後に、それ 以外を超低周波イベントとして桃色(2024 年 7 月 31 日以前), および赤色(8月1日以降)の点でそれぞれ示す.

2024年8月8日日向灘の地震による高周波エネルギー輻射量

Mainshock

31.8

31.6

31.4°

31.8

31.6

31.4°

131 6°

131.6

131.8°

132.0

131.8°

1-4 days

132.0

- Hi-netの3成分合成地震波形エンベロープから、日向灘の地震 (M_{µi}6.8)後10日間のエネルギー輻射量(4-20Hz)を推定 (Sawazaki et al., 2016)
- 地震発生から10日後の時点で、本震のエネルギー輻射量に対す る余震からの積算エネルギー輻射量の割合は2.2%

図1:今回の地震の震源(黄星印)およびその後 10日間の震源分布(黒丸)。白星印および青丸 は、2019年日向灘の地震(M_{нi}6.4)の震源とその 後10日間の余震分布。エネルギー輻射位置は 余震分布に基づき橙丸の位置に固定。赤三角は エネルギー輻射量推定に用いたHi-net観測点。 飽和が見られた波形については併設のKiK-net観 測点を使用。

図2:本震および、0-1日後、1-4日後、 4-10日後の余震による総エネルギー輻 射量(4-20Hz)の分布。

防災利研

図3:(a)黒線:地震発生から10日後までのエネルギー輻射量W(4-20Hz)の推移。灰色丸:Hi-net震源に基づき作成したM-T図。図中の M_HとWの関係式は、図1の赤点線で囲まれた領域で発生した 1.5<=M₁₁<4.5の地震について、最小二乗法により係数を推定して作 成。(b)赤、黒、灰色線は、それぞれ今回の地震、2019年日向灘の 地震(M_H6.4)、2011年宮城県沖の地震(M_H7.3。東北沖地震の最大 前震)後の余震による積算エネルギー輻射量(4-20Hz)の推移。(c) 相対積算エネルギー輻射量(余震の積算エネルギー輻射量÷それ ぞれの「本震」によるエネルギー輻射量Wm)の推移。

防災科学技術研究所資料

0-1 day

31.8°

31.6°

31.4°

31.8°

31.6

31.4°

131.6°

131.6°

131.8°

131.8°

令和6年能登半島地震の震源過程(暫定)

令和6年能登半島地震(Mj 7.6; 気象庁)について、強震波形記録を用いた震源インバージョン解析を行った。

- 記録:K-NET・KiK-net・F-netの30観測点における速度波形三成分のS波部分(0.025-0.25 Hz)
 - * 気象庁一元化震源記載の発震時刻より約13秒前の地震(Mj 5.9)を含めて一連のイベントとして解析を実施
- 解析手法:マルチタイムウィンドウ線形波形インバージョン
 - (小断層4 km×4 km、1.6秒幅のタイムウィンドウを0.8秒ずらして29個並べる)
- 断層面設定:余震の空間分布やメカニズム解、地殻変動記録を参考に、6つの矩形セグメントで構成
 北東部のセグメント(#5・#6)を北西傾斜にした場合と南東傾斜にした場合でそれぞれ解析

北東部を北西傾斜とした断層モデルでの解析

北東部を南東傾斜とした断層モデルでの解析

令和6年能登半島地震の震源過程(暫定)

令和6年能登半島地震の震源過程(暫定)

21

令和6年能登半島地震の震源過程(暫定):北東部を北西傾斜とした断層モデルでの解析

令和6年能登半島地震の震源過程(暫定):北東部を南東傾斜とした断層モデルでの解析

