令和6年8月9日 地震調査研究推進本部 地震調査委員会

2024年の主な地震活動の評価(案)

A. 令和6年能登半島地震(*)

【2024年1月1日、M7.6・最大震度フ・津波を観測】

[M7.6の地震に関する概要]

- 1月1日16時10分に石川県能登地方の深さ約15kmでマグニチュード(M)7.6の地震が発生した。この地震により石川県輪島市や志賀町(しかまち)で最大震度7を観測したほか、能登地方の広い範囲で震度6強や6弱の揺れを観測し、被害を伴った。M7.6の地震の前後にも規模の大きな地震が発生し強い揺れが長く続いた。また、石川県では長周期地震動階級4を観測した。この地震の発震機構は北西−南東方向に圧力軸を持つ逆断層型で、地殻内で発生した地震である。
 - 令和6年能登半島地震の概要
 - ・ 令和6年能登半島地震に伴う震度と加速度、揺れの状況、強震動

「M7.6の地震に伴う津波]

- 今回の地震により、金沢観測点(港湾局)で80cm、酒田観測点(気象庁)で0.8mなど、北海道から九州にかけての日本海沿岸を中心に津波を観測した。そのほか、空中写真や現地観測から、能登半島等の広い地域で津波による浸水が認められた。また、現地調査により、石川県能登町(のとちょう)や珠洲市(すずし)で4m以上の津波の浸水高や、新潟県上越市で5m以上の遡上高を観測した。
 - ・令和6年能登半島地震に伴う津波

「M7.6の地震に伴う地殻変動]

- GNSS観測によると、今回の地震に伴って、輪島2観測点(国土地理院)で2.0m程度の南西方向への変動、1.3m程度の隆起が見られるなど、能登半島を中心に大きな地殻変動が見られた。さらに新潟県など日本海側だけでなく、関東地方や中部地方など広い範囲で北西から北向きの地殻変動が観測された。陸域観測技術衛星2号「だいち2号」が観測した合成開ロレーダー画像の解析によると、輪島市西部で最大4m程度の隆起、最大2m程度の西向きの変動、珠洲市北部で最大2m程度の隆起、最大3m程度の西向きの変動が検出された。現地調査により、能登半島の北西岸で、今回の地震に伴う新たな海成段丘が認められた。また、空中写真及び合成開ロレーダー画像の解析や現地調査から、能登半島北岸の広い範囲で隆起により陸化した地域があることが分かった。
 - 令和6年能登半島地震に伴う地殻変動

「M7.6の地震の震源断層]

○ 2023 年 12 月までの地震活動の範囲は能登半島北東部の概ね 30 km四方の範囲であったが、1 月 1 日の M7.6 の地震の直後からの地震活動は北東ー南西に延びる 150 km程度の範囲に広がっていた。直後の地震活動域は主として南東に傾斜した面に沿って、北東側では北西に傾斜した面に沿っていた。また、地震活動域の西端付近では 1 月 1 日に M6.1 の地震が、東端付近では 1 月 9 日に M6.1 の地震が発生するなど、現在も概ね同様の範囲で地震が発生している。 M7.6 の地震の発震機構、地震活動の分布、GNSS観測、合成開口レーダー画像、地震波及び津波波形の解析から推定される震源断層は、北東ー南西に延びる 150 km程度の主として南東傾斜の逆断層であり、断層すべりは震源から北東と南西の両側に進行したと考えられる。

令和6年能登半島地震の地震活動、震源断層

○ 津波データ解析から、M7.6の地震に伴う地震時の隆起域の東端は震源域北東(能登半島から北東に約40km) に推定されている。

令和6年能登半島地震の津波波源域

「海底地すべり〕

○ また、2024年2月と2023年5月に取得した水深データを比較した結果、能登半島の東方約30kmにある海底谷の斜面が複数箇所で崩壊していることが分かった。その内、最も大きく崩壊した箇所では長さ約1.6km、幅約1.1km崩れ、最大で約50m深くなっていた。この崩壊はM7.6の地震により生じたものと考えられる。

能登半島東方沖における海底地形調査結果

○ 2024年と2010年に調査された富山湾の海底地形を比較した結果、富山市沖約4kmの海底谷の斜面が、南北約3.5km、東西約1kmにわたって崩れ、最大40m程度深くなっていることが確認された。M7.6の地震発生の3分後に富山検潮所で観測された津波と関係した可能性がある。

富山湾南部における海底地形調査結果

「M7.6の地震に伴う地表変状]

○ 能登半島北東部にある若山川沿いに約4kmにわたって最大で約2m の上下変位 を伴う地表変状が確認された。

令和6年能登半島地震の地表変状

「M7.6の地震後の地震活動]

○ 昨年12月までと比べて地震活動の範囲は広がっており、これまでより広範囲で強い揺れを観測している。能登半島北東部では、これまで起きていた地震活動より浅いところでも活動が見られている。1月1日16時から2月8日08時までの間に、最大震度1以上を観測した地震は1,608回(震度7:1回、震度6弱:2回、震度

5強:8回、震度5弱:7回)発生した。

令和6年能登半島地震前後の地震活動

- 1月1日に発生した M7.6 の地震から1か月が経過した現在も、M7.6 の地震の発生前と比較すると依然として地震活動は活発な状態である。今後1~2週間程度、最大震度5弱程度以上の地震に注意が必要である。最大震度5強や6弱以上の地震についても、平常時と比べると依然として発生しやすい状況にある。なお、日本海沿岸の大地震である昭和39年(1964年)の新潟地震(M7.5)、昭和58年(1983年)日本海中部地震(M7.7)、平成5年(1993年)北海道南西沖地震(M7.8)の際には、最大の地震から約1か月後に大きな規模の地震が発生している。海底で規模の大きな地震が発生した場合、津波に注意する必要がある。
 - 令和6年能登半島地震前後の地震発生確率の状況
 - ・日本海沿岸で発生した過去の大地震

「M7.6の地震後の余効変動]

- GNSS観測の結果によると、1月1日のM7.6の地震の後、能登半島を中心に 富山県や新潟県など広い範囲で余効変動と考えられる地殻変動が観測されている。
 - 令和6年能登半島地震後の地殻変動

[活断層との関係]

- 能登半島西方沖から北方沖、北東沖にかけては、主として北東-南西方向に延びる複数の南東傾斜の逆断層が活断層として確認されている。この領域で2024年の地震後に取得した高分解能反射探査・海底地形調査データと2007年から2008年の同等のデータを比較した結果、能登半島北西沖合の活断層帯に沿った広い範囲で北西側に対して南東側が隆起する断層変位が観測された。門前沖セグメント東部で約1m、猿山沖セグメントで約1~4m、輪島沖セグメントで約1~3m、更に珠洲沖セグメントでは約2mの隆起が観測されている。これらの隆起は1月1日のM7.6の地震に伴う変動を示している可能性が高く、南東傾斜の逆断層の活動が原因と推定される。
 - 能登半島北岸沖の活断層
 - ・能登半島北岸沖周辺における海底地形調査結果
- 更に北東の佐渡島西方沖にかけては、主として北西傾斜の逆断層が活断層として 確認されており、この活断層の一部が今回の地震に関連した可能性も考えられる。

「M7.6の地震前の地震活動と地殻変動]

○ 今回地震が発生した石川県能登地方の地殻内では2018年頃から地震回数が増加傾向にあり、2020年12月から地震活動が活発になり、2021年7月頃から更に活発になっていた。一連の地震活動において、2020年12月1日から2023年12月31日までに震度1以上を観測する地震が506回発生した。また、2020年12月頃から地殻変動も観測されていた。

- 令和6年能登半島地震前の地震活動
- ・令和6年能登半島地震前の地殻変動

[地震活動の見通し]

- これまでの地震活動及び地殻変動の状況を踏まえると、2020 年 12 月以降の一連の地震活動は当分続くと考えられ、M7.6 の地震後の活動域及びその周辺では、今後強い揺れや津波を伴う地震発生の可能性がある。
- *:2024年1月1日に石川県能登地方で発生したM7.6の地震及び2020年12月以降の一連の地震活動について、気象庁が定めた名称。

注:GNSSとは、GPSをはじめとする衛星測位システム全般をしめす呼称である。

B. 福島県沖の地震活動

【2024年3月15日、M5.8·最大震度5弱】

○ 3月15日に福島県沖の深さ約50kmでM5.8の地震が発生した。この地震の発震機構は西北西-東南東方向に圧力軸を持つ逆断層型で、太平洋プレートと陸のプレートの境界で発生した地震である。この地震の震源付近では、13日にM4.7の地震が発生している。

GNSS観測の結果によると、これらの地震に伴う有意な地殻変動は観測されていない。

- · 3月13日、15日 福島県沖の地震
- ・福島県沖の地震前後の GNSS 観測データ

注:GNSSとは、GPSをはじめとする衛星測位システム全般を示す呼称である。

【2024年3月21日、M5.3·最大震度5弱】

○ 3月21日に茨城県南部の深さ約45kmでM5.3の地震が発生した。この地震の発 震機構は北西-南東方向に圧力軸を持つ逆断層型で、フィリピン海プレートと陸 のプレートの境界で発生した地震である。

GNSS観測の結果によると、今回の地震に伴う有意な地殻変動は観測されていない。

- ・3月21日 茨城県南部の地震
- ・茨城県南部の地震前後の GNSS 観測データ

注:GNSSとは、GPSをはじめとする衛星測位システム全般を示す呼称である。

□. 岩手県沿岸北部の地震活動

【2024年4月2日、M6.0·最大震度5弱】

○ 4月2日に岩手県沿岸北部の深さ約70kmでM6.0の地震が発生した。この地震の発震機構は太平洋プレートが沈み込む方向に圧力軸を持つ型で、太平洋プレート内部で発生した地震である。

GNSS観測の結果によると、この地震に伴う有意な地殻変動は観測されていない。

- ・4月2日 岩手県沿岸北部の地震
- ・岩手県沿岸北部の地震前後の GNSS 観測データ

注:GNSSとは、GPSをはじめとする衛星測位システム全般を示す呼称である。

[日] 台湾付近の地震活動

【2024年4月3日、M7.7·津波を観測】

- 〇 4月3日に台湾付近で M7.7 の地震が発生した。この地震の発震機構は西北西-東南東方向に圧力軸を持つ逆断層型であった。この地震により、与那国島で 27cm など、沖縄県で津波を観測した。
 - 2024年4月3日 台湾付近の地震(概要、津波)

GNSS観測の結果によると、今回の地震に伴い与那国島や波照間島周辺でわずかな地殻変動を観測している。これまでにGNSSで検出された地殻変動は、大きいところで西北西方向に約1cmである。また、陸域観測技術衛星「だいち2号」の合成開口レーダー干渉解析の結果によると、今回の地震に伴い震央周辺で最大50cm程度の隆起が検出された。

- ・台湾付近の地震前後の GNSS 観測データ
- 2024年4月3日台湾の地震 だいち2号SAR 干渉解析結果

4月3日09時から5月12日までにM6以上の地震が10回発生するなど、現在 も活発な地震活動が継続している。

・2024年4月3日 台湾付近の地震(地震活動)

今回の地震は、地震調査委員会が「日向灘及び南西諸島海溝周辺の地震活動の長期評価(第二版)(令和4年3月25日公表)」で日本に津波被害をもたらす可能性のある地震として想定していた領域(与那国島周辺のひとまわり小さい地震)で発生している。なお、長期評価では、この領域はM7.0~7.5程度の地震が30年以内に発生する確率はⅢランク(*)で、海溝型地震の中では発生する確率が高いグループに分類されている。

南西諸島海溝周辺の地震活動の評価

*:海溝型地震における今後30年以内の地震発生確率が26%以上を「IIIランク」、3%~26%未満を「IIランク」、3%未満を「IIランク」、不明(すぐに地震が起きることを否定できない)を「IIランク」と表記している。

注: GNSSとは、GPSをはじめとする衛星測位システム全般を示す呼称である。

F. 大隅半島東方沖の地震活動

【2024年4月8日、M5.1・最大震度5弱】

○ 4月8日に大隅半島東方沖の深さ約40kmでM5.1の地震が発生した。この地震の発震機構はフィリピン海プレートが沈み込む方向に張力軸を持つ型で、フィリピン海プレート内部で発生した地震である。

GNSS観測の結果によると、今回の地震に伴う有意な地殻変動は観測されていない。

- ・4月8日 大隅半島東方沖の地震
- ・大隅半島東方沖の地震前後の GNSS 観測データ

注:GNSSとは、GPSをはじめとする衛星測位システム全般を示す呼称である。

G. 豊後水道の地震活動

【2024年4月17日、M6.6·最大震度6弱】

- 4月17日23時14分に豊後水道の深さ約40kmでM6.6の地震が発生した。この地震により愛媛県及び高知県で最大震度6弱を観測した。また、この地震により高知県西部で長周期地震動階級2を観測した。
 - ・2024年4月17日 豊後水道の地震(概要、地震活動)
 - ・豊後水道の地震前後の GNSS 観測データ

発震機構は東西方向に張力軸を持つ正断層型で、発震機構及び震源の深さから 沈み込むフィリピン海プレート内部で発生した地震と考えられる。

- 2024 年 4 月 17 日豊後水道 地震活動の状況

その後、この地震の震源付近では地震活動は継続しているものの、時間の経過とともに地震回数は減少してきている。4月17日23時から5月13日08時までの間に、最大震度1以上を観測した地震が76回(震度6弱:1回、震度4:1回)発生した。

豊後水道の地震活動の最大震度別地震回数

GNSS観測の結果によると、今回の地震に伴い愛媛三崎及び西土佐観測点で南東方向にごくわずかな地殻変動が観測された。陸域観測技術衛星「だいち2号」の合成開口レーダー干渉解析の結果によると、今回の地震に伴う有意な地殻変動

は観測されていない。

- ・豊後水道の地震前後の GNSS 観測データの干渉解析
- ・豊後水道の地震前後のだいち2号の観測データ

今回の地震は、地震調査委員会が「日向灘及び南西諸島海溝周辺の地震活動の長期評価(第二版)(令和4年3月25日公表)」で想定していた領域(安芸灘~伊予灘~豊後水道の沈み込んだプレート内のやや深い地震)で発生している。なお、長期評価では、この領域では M6.7~M7.4 程度の地震が 30 年以内に発生する確率はⅢランク(*)で、海溝型地震の中では発生する確率が高いグループに分類されている。

- ・日向灘周辺の地震活動の評価
- 長期評価の対象領域と今回の地震
- ・日向灘周辺で発生した過去の地震と今回の地震

*:海溝型地震における今後30年以内の地震発生確率が26%以上を「IIIランク」、3%~26%未満を「IIランク」、3%未満を「IIランク」、不明(すぐに地震が起きることを否定できない)を「IIランク」と表記している。

注:GNSSとは、GPSをはじめとする衛星測位システム全般を示す呼称である。

田. 令和6年能登半島地震(*)

【2024年6月3日、M6.0・最大震度5強】

- 1月1日に石川県能登地方で発生した M7.6 の地震の震源域では、地震活動が低下してきていたものの、6月3日には M6.0 の地震(最大震度5強)や M5.0 の地震(最大震度4)が発生するなど、2020年12月から活発になった地震活動は依然として継続している。6月3日の M6.0 の地震の発震機構は北西ー南東方向に圧力軸を持つ逆断層型であり、南東傾斜の M7.6 の地震の震源域の深部で発生した。6月1日から6月30日までに震度1以上を観測した地震は35回(震度5強:1回、震度4:1回、震度3:1回)発生している。6月中の最大規模の地震は、3日06時31分に発生した M6.0 の地震(最大震度5強)である。なお、5月中に震度1以上を観測した地震は28回であった。
 - 「令和6年能登半島地震」の地震活動
 - 「令和6年能登半島地震」の最大震度別地震回数
 - ・6月3日 石川県能登地方の地震

M7.6 の地震後の震源分布は全体的な傾向としては、南東傾斜の断層面上で発生しているものの、臨時の海底地震観測に基づき得られた詳細な震源分布によると、震源域北東部では、北西傾斜の面上でも発生している。

海底地震観測から推定された地震活動

陸のプレート内で発生した大地震の事例では、平成16年(2004年)新潟県中

越地震 (M6.8)、平成 28 年 (2016 年) 熊本地震 (M7.3)、平成 30 年北海道胆振 東部地震 (M6.7) のように、最大の地震発生から数か月以上経って、地震の発生 数が緩やかに減少している中で大きな規模の地震が発生したことがある。

・陸のプレート内で発生した過去の大地震との活動比較(12 か月間)

GNSS観測によると、1月1日のM7.6の地震の後、およそ6か月間に能都(のと)観測点で北西方向に約4cmの水平変動など、能登半島を中心に富山県や新潟県、長野県など広い範囲で1cmを超える水平変動、能登半島北部では輪島観測点で約7cmの沈降が観測されるなど、余効変動と考えられる地殻変動が観測されている。また、6月3日のM6.0の地震に伴い、珠洲(すず)観測点で西南西方向に1cm程度の水平変動、2cm程度の隆起が見られたほか、震央周辺で最大2cm程度の水平変動及び隆起が見られるなど、地殻変動が観測された。

令和6年能登半島地震(1月1日 M7.6)後のGNSS観測データ

石川県能登地方の地殻内では 2018 年頃から地震回数が増加傾向にあり、2020年12月から地震活動が活発になり、2022年6月にはM5.4、2023年5月にはM6.5、2024年1月にはM7.6の地震が発生した。一連の地震活動において、2020年12月1日から2024年6月30日までに震度1以上を観測する地震が2386回発生した。また、2020年12月頃から地殻変動も観測されていた。

- ・ 令和 6 年能登半島地震(1 月 1 日 M7.6)による広域の地殻変動
- ・石川県能登地方の地震(6月3日 M6.0)前後の観測データ
- 令和6年能登半島地震(1月1日 M7.6)前の観測データ

これまでの地震活動及び地殻変動の状況を踏まえると、2020年12月以降の一連の地震活動は当分続くと考えられ、M7.6の地震後の活動域及びその周辺では、今後強い揺れや津波を伴う地震発生の可能性がある。

*: 2024年1月1日に石川県能登地方で発生した M7.6 の地震及び 2020年12月以降の一連の地震活動について、気象庁が定めた名称。

注:GNSSとは、GPSをはじめとする衛星測位システム全般を示す呼称である。

各地震活動の評価は、発生後、令和6年7月(の定例の地震調査委員会)までに公表された評価 内容をとりまとめたものです。これ以降の公表状況については、最新の評価結果(毎月の地震活動 の評価)をご覧ください。

なお、最近1年間に発生した地震活動の評価は、今後のとりまとめ作業により内容更新される可能性があります。