資料 3総3-(2) 次期総合施策専門委員会 9月14日

上盤プレート内地震の 長期評価に向けて

佐藤比呂志 東京大学地震研究所

活断層: 地形・地質学的に認められる断層で、 最近地質時代に繰り返し活動したもの(松田時 彦, 1997)

※震源断層: 地震波を発生させる断層

ここで活断層という用語 は、活断層-震源断層シス テムの浅部に限定して使 用する。

20世紀以降の内陸で発生した主な地震(M6.5以上)

1914	秋田仙北(M7.1)
1922	千々石湾(M6.9)# 雲仙断層帯
1925	北但馬(M6.8)#
1939	男鹿(M6.8)#
1930	北伊豆(M7.3)丹那断層
1927	北丹後(M7.3) 郷村断層・山田断層(一部)
1943	鳥取(M7.2) 吉岡断層・鹿野断層
1945	三河(M6.8) 深溝断層
1948	福井(M7.1)
1961	北美濃(M7.0)
1962	宮城県北部(M6.5)
1969	岐阜県中部(M6.6) 畑佐断層
1974	伊豆半島沖(M6.9)# 石廊崎断層
1993	能登半島沖(M6.6)#
1995	兵庫県南部(M7.2) 野島断層・六甲断層系(一部
1997	鹿児島県北西部(M6.6)
1999	鳥取県西部(M7.3)
2004	中越(M6.8) 小平尾断層
2005	福岡県西方沖(M7.0)#
2007	能登半島(M6.9)#
2007	中越沖(M6.8)#
2008	岩手宮城内陸(M7.2)
2011	長野県北部(M6.7)
2011	福島県浜通 (M7.0) 塩ノ平断層・井戸沢断層
2014	長野県北部(M6.7) 神城断層
2016	熊本(M7.2) 布田川・日奈久(一部)
2016	鳥取県中部(M6.6)
2018	北海道胆振東部(M6.7)

黄色: 震源と活断層の関連が不明 な地震

海陸境界部で発生した地震

活断層-震源断層システムの分類

20世紀以降の内陸地震を起こした震源断層の分類

活断層-震源断層

10

1930 北伊豆(M7.3)丹那断層
1927 北丹後(M7.3) 郷村断層・山田断層(一部)
1943 鳥取(M7.2) 吉岡断層・鹿野断層
1945 三河(M6.8) 深溝断層
1969 岐阜県中部(M6.6)畑佐断層
1974 伊豆半島沖(M6.9)# 石廊崎断層
1975 兵庫県南部(M7.2)野島断層・六甲断層系(一部)
2004 中越(M6.8) 小平尾断層
2011 長野県北部(M6.7)
2011 福島県浜通(M7.0)塩ノ平断層・井戸沢断層
2014 長野県北部(M6.7) 神城断層
2016 熊本(M7.2) 布田川・日奈久(一部)

伏在活断層-震源断層 12

- 1914 秋田仙北(M7.1) 1922 千々石湾(M6.9) # 雲仙断層帯 1939 男鹿(M6.8) # 1948 福井(M7.1) 1961 北美濃(M7.0) 1962 宮城県北部(M6.5) 1993 能登半島沖(M6.6) # 2005 福岡県西方沖(M7.0) # 2007 庇登半島(M6.9) # 2007 中越沖(M6.8) # 2008 岩手宮城内陸(M7.2)
- ・活動履歴から長期評価可能な断層は半数以下 ・全体に震源断層の抽出が不足

震源断層 6 1925 北但馬(M6.8)# 1997 鹿児島県北西部(M6.6) 1999 鳥取県西部(M7.3) 2011 長野県北部(M6.7) 2016 鳥取県中部(M6.6) 2018 北海道胆振東部(M6.7)

日本列島の地殻変動とプレート境界プロセス

プレート間巨大地震と上盤プレート内地震の関係

南海トラフ沿いのプレート間巨大地震 (赤丸)と内陸地震のMT図

2011年東北地方太平洋沖地震前の東西 方向の応力蓄積速度と地震前の20世紀以 降に発生したM6以上の地震 (Hashima et al., in prep.) Freed et al. (2017)のモデ ルをもとに計算

東西伸張

東西圧縮

構造モデルによる地震発生ポテンシャル評価

地殻変動データを用いた応力モデリング

西南日本における地殻変動のモデル化と断層面上のクーロン応力蓄積速度

上盤プレート内地震の長期評価のための物理モデルの基礎を提供

インバージョンによって得られたすべり速度 欠損分布・余剰分布と地表変位速度

矢印と各点の色は残差変位速度の水平、上下成分。 残差変位速度は観測変位速度から計算変位速度を 差し引いた量である。

震源断層におけるクーロン破壊応力

Hashima et al. (2018)SCEC meeting abstractによる。

反射法による震源断層のイメージング:北上低地西縁断層帯

低周波の制御震源を利用した伏在断層のイメージング

平成29年度 石狩平野横断地殻構造探査断面(平野部)

No VE

日本海地震・津波プロジェクト「2017石狩平野横断地殻構造探査」

伏在断層が引き起こした被害地震 1891年濃尾地震 (M8.0)

濃尾平野北東部の地震活動 (震源位置はYano et al., 2017による)

- ・死者7273人,住家全壊14万棟以上(『日本の地震活動』)
- ・死者およそ6100名は濃尾平野で発生するなど、平野部に甚大な被害

兵庫県南部地震・福井地震など平 野下の断層は甚大な被害を生む

- ・根尾谷断層の南部延長・濃尾平野下の伏在断層も破壊した可能性(村松ほか、2002; Fukuyama & Mikumo, 2003
- ・温見・根尾谷断層はA級(2mm/年)だが梅原断層はB-C級→ 伏在断層の破壊が、濃尾平野の甚大な被害の要 因のひとつの可能性

地震観測に基づく震源断層マッピングの重要性

Yano et al. (2017) JUICE catalogue

「活断層」ではなく、震源 断層の評価には地震観測 データの利用が不可欠

地震波トモグラフィと震源断層の関係

横浜国大 石川教授がMatsubara & Obara (2011)をもとに作成 Vp/Vs

九州地域の断層帯のスリップレートの現状

中国地域の断層帯のスリップレートの現状

2016鳥取県中部 M6.6 (L17.9km)

٠

٠

- ・ 黄色 横ずれ主体 の断層帯で、横ず れ変位速度が不明
 - 黄色(破線)ス リップレートの信 頼度が低い断層帯
 - 21断層帯中、16断 層帯で横ずれ変位 速度に関するデー 夕がなく、残りも 信頼性が低い

推本(2016)中国地域の活断層の地域評価

九州地域の断層帯のスリップレートと震源断層面上のクーロン応力蓄積速度

・断層帯のスリップレートは、滑りやすさの指標となるため、類似したクーロン応 力蓄積速度を示す断層帯を区分できる可能性がある。

構造モデル高度化のための島弧プロファイリング

リソスフェアー・上部マントルの構 造解明を視野にいれたプロファイリ ング

リソスフェア・アセノスフェアー境界
 (LAB)
 モ木面
 延性-脆性境界
 震源断層

※広帯域海底地震観測+制御震源の第二 世代型のプロファイリング

フィリピン海プレート北端部・伊豆衝突帯での歪みの分配

Le Pichon et al. (1987) EPSLの指摘以降、歪み分配の実態解明は30年以上放置

次期総合施策に向けて(1)

震源断層の3Dマッピング

- -上盤プレート内の震源断層のマッピングが不足
- -平野部に伏在する断層は、人的・社会的に大きな被害を 生み出す
- -物理探査・地震活動など、地球科学的な知見を統合して 検出し、三次元形状モデルを構築する必要がある。

物理モデルに基づく地震発生ポテンシャル評価

-測地・地震観測結果を充たす物理的な数値モデルにより、 震源断層に作用するクーロン応力の蓄積速度を求め、地 震発生ポテンシャル評価を行う。

- -この手法では活動履歴が不明の、多くの震源断層について、ポテンシャル評価が可能になる。
- -観測地震による地震発生確率評価と、統合的な手法を開 発する。

次期総合施策に向けて(2)

活断層の長期ひずみ速度を求める

-断層の動き易さは、断層ごとに異なる。活断層のスリッ プレートは、断層の動き易さの指標として使用すること ができる。

- ひずみ速度によって、長期間の塑性変形を定量的に 明らかにできる。広域的に扱うことにより、伏在する断 層群のひずみ速度の推定に活用できるほか、現在の地殻 変動の理解に有効である。

構造モデル高度化のためのプロファイリング

-リソスフェア・アセノスフェア境界など、基本的な構造 が解明されていない。モデルの高度化に資するデータを 大規模なものから詳細なものへと、自然地震観測と制御 震源を複合させた構造探査を行う必要がある。

次期総合施策に向けて(3)

地震発生ポテンシャル評価に資する観測の推進

統合モデルによる地震発生ポテンシャル評価に資する観測 を優先的に実施