2.2 プレート固着・すべり分布のモニタリングシステムの構築

(1) 業務の内容

(a) 業務題目 「プレート固着・すべり分布のモニタリングシステムの構築」

(b) 担当者

所属機関	役職	氏名
東北大学大学院理学研究科	准教授	太田 雄策
東北大学大学院理学研究科	教授	日野 亮太
東北大学大学院理学研究科	助教	東 龍介
東北大学大学院理学研究科	技術専門職員	鈴木 秀市
東北大学大学院理学研究科	技術専門職員	平原 聡
東北大学大学院理学研究科	技術専門職員	中山 貴史
東北大学大学院理学研究科	技術専門職員	出町 知嗣
東北大学大学院理学研究科	技術専門職員	海田 俊輝
東北大学大学院理学研究科	学術研究員	佐藤 真樹子
東北大学大学院理学研究科	技術補佐員	平岡 恵美子
東北大学大学院理学研究科	技術補佐員	小鳥谷 久美子
東北大学災害科学国際研究所	教授	木戸 元之
東北大学災害科学国際研究所	助教	富田 史章
海洋研究開発機構	主任研究員	飯沼 卓史
海洋研究開発機構	研究員	縣 亮一郎
海洋研究開発機構	ポストドクトラル研究員	ライムント゛ フ゜ラターマルティネス
東京大学地震研究所	教授	篠原 雅尚
東京大学地震研究所	教授	小原 一成
東京大学地震研究所	教授	塩原 肇
東京大学地震研究所	准教授	望月 公廣
東京大学地震研究所	助教	悪原 岳
東京大学地震研究所	技術専門職員	阿部 英二
東京大学地震研究所	技術専門職員	田中 伸一
東京大学地震研究所	技術専門職員	増田 正孝
東京大学地震研究所	技術専門職員	宮川 幸治
東京大学地震研究所	技術職員	橋本 匡
京都大学防災研究所	准教授	伊藤 喜宏
京都大学防災研究所	助教	山下 裕亮

(c) 業務の目的

南海トラフにおける巨大地震震源域の様々な時間帯域におけるプレート間固着・すべ りの現状把握を実現し、情報発信するために、現実的な3D構造モデルに基づいた、プ レート境界及び分岐断層等の海域断層を含めた固着・すべりを、3D構造モデルの不確 実性を含む、推定の曖昧さとともに定量化するシステム開発を行う。同システムにはプ レート境界以外の断層も含む3D構造モデルに基づいた、地下の断層におけるすべりと 地表及び海底での地殻変動を結びつけるグリーン関数を組み込む。さらに3D構造モデ ルに不均質粘弾性構造を追加したグリーン関数を導入する。これによって、プレート境 界におけるすべり遅れの蓄積、地震時のすべり及びゆっくりすべり等の時空間分布を迅 速かつ精度よく把握するとともに、その推定誤差を定量的に提示し、情報発信できるシ ステムのプロトタイプを実現する。加えて分岐断層等のプレート境界以外の海域断層も 考慮に入れた推定を試みるとともに、広帯域海底地震観測により、プレート境界浅部に おけるスロー地震活動や非プレート境界の地震活動の詳細な時空間把握を行う。3D構 造モデルが更新されれば、それに追随してグリーン関数を修正して随時再解析を行う。 これらのうち、プレート境界及び分岐断層等の海域断層を含めた固着・すべりの推定の 曖昧さを含めた推定技術については、国土地理院が別途進めている「南海トラフ沿いの 巨大地震発生に対応するための高精度な地殻活動把握手法の研究開発」と密接に連携す る。また、地震時すべり分布の即時推定については、国土地理院で運用している REGARD (電子基準点リアルタイム解析システム) への技術移転を念頭に置いた開発を行う。

- (d) 5か年の年次実施計画
- 1) 令和2年度:

正確な地殻変動の再現を目指し、現実的な3D構造モデルを用いたグリーン関数の 構築を行うために、3D構造モデルに基づくグリーン関数の計算を行った。推定され た断層すべりが持つ誤差を定量評価するための手法の枠組みを得るために、プレート 間固着・すべり分布推定の誤差を定量評価する手法の開発を開始した。また、南海ト ラフプレート境界浅部におけるスロー地震活動や非プレート境界の地震活動の詳細な 時空間把握を目指し、南海トラフ中西部における長期海底地震観測を開始した。

2) 令和3年度:

正確な地殻変動の再現を目指し、現実的な3D構造モデルを用いたグリーン関数の 構築及び改良を行った。推定された断層すべりが持つ誤差を定量評価するための手法 の開発を継続した。また、南海トラフプレート境界浅部におけるスロー地震活動や非 プレート境界の地震活動の詳細な時空間把握を目指し、広帯域長期海底地震観測を継 続した。

3) 令和4年度:

プレート境界以外の断層面が地震間や地震時の地殻変動に与える影響を評価するこ とを目指し、分岐断層でのすべりによる地表・海底における変位グリーン関数を得た。 構築した3D構造モデルの不確実性が固着・すべり分布推定に与える影響について予 察的知見を得た。推定された断層すべりが持つ誤差を定量評価するための手法の開発 を継続した。粘弾性構造を考慮した地殻変動場の再現を目指し、3D粘弾性構造モデ ルに基づいたグリーン関数の作成に着手した。さらに、南海トラフプレート境界浅部 におけるスロー地震活動や非プレート境界の地震活動の詳細な時空間把握を目指し、 広帯域地震観測データを得るとともに、浅部プレート境界における固着状況の把握・ モデル化について予察的な知見を得た。 4) 令和5年度:

プレート境界以外の断層面が地震間や地震時の地殻変動に与える影響を評価するこ とを目指し、内陸断層を含めた構造モデルでのグリーン関数を得るとともに、プレー ト境界と内陸断層におけるすべり・固着分布を同時推定した結果を得る。構造モデル 等の不確実性が固着・すべり分布推定に与える影響について知見を得る。前回の南海 トラフ地震以降のすべり遅れの蓄積並びに現在の応力状態とその不確かさについて知 見を得る。さらに、南海トラフプレート境界浅部におけるスロー地震活動や非プレー ト境界の地震活動の詳細な時空間把握を目指し、広帯域地震観測データを得るととも に、浅部プレート境界における固着状況の把握・モデル化について知見を得る。

5) 令和6年度:

内陸断層及びプレート境界における固着・すべりの履歴を同時推定した結果を得る。 開発を進めた誤差の定量評価付きプレート間固着・すべり分布即時推定手法を、REGARD へ技術移転するために必要な情報を得る。南海トラフ中西部における長期観測型海底 地震観測データの取りまとめと、それを用いた浅部プレート境界における固着状況の 把握・モデル化についてまとめの知見を得る。

(e) 令和4年度業務目的

正確な地殻変動の再現を目指し、現実的な3D構造モデルを用いたグリーン関数の構築 及び改良を行う。具体的には海域の分岐断層におけるグリーン関数をこれまでの知見に基 づいて構築する。推定された断層すべりが持つ誤差を定量評価するための手法の開発を継 続する。具体的には、すべり分布を安定的に推定するための正則化拘束の高度化を行う。 また、南海トラフプレート境界浅部におけるスロー地震活動や非プレート境界の地震活動 の詳細な時空間把握を目指し、広帯域地震観測を継続しつつ、回収データに対して予備的 な解析を実施する。

(2) 令和4年度の成果

①固着・すべり状態の変化による地殻変動の計算

(a) 業務の要約

プレート境界におけるすべり遅れの蓄積や、地震時のすべり、スロースリップなど の時空間分布を迅速かつ精度よく把握するシステムの構築を実現するため、地殻変動 データからプレート間の固着・すべり分布を推定するうえで必要となる、地下の断層 におけるすべりと地表及び海底での地殻変動を結びつけるグリーン関数を、現実的な 3D構造モデルに基づいて計算する。

本年度は、上記目的達成のため、プレート境界以外の断層におけるすべりが地表に もたらす変形を定量的に評価できるようにするために、昨年度構築した全国一次地下 構造モデルにできうる限り忠実に従った有限要素法モデルの中に分岐断面を設定し、 変位応答グリーン関数の計算を実施した。

また、昨年度計算した現実的な3D構造モデルに基づくプレート境界での固着・す べりに対するグリーン関数を用いたプレート間固着域の推定を試行した。 (b) 業務の実施方法

トラフ軸に近い浅部プレート境界周辺には、プレート境界から分岐してトラフ軸よ りも陸側の海底に至る断層がいくつも存在している。海洋研究開発機構がこれまでに 実施してきた地震波構造探査の結果^{1,2 など)}から、このような分岐断層のうち空間的な 連続性が強く見られるとともに海底地形に大きく影響しているとみられる面を、地震 時にすべりを起こす可能性が高い「分岐断層」として選択した。構造探査測線それぞれ において、プレート境界から分岐断層が枝分かれする位置と分岐断層が海底面に達す る位置を目視で読み取り、分岐断層の下端及び上端を決定した。これらをつないで分 岐断層面モデルを構築し(図2-2-①-1)、この面でのすべりに対する変位応答グ リーン関数の計算を実施することとした。

また、昨年度計算した現実的な3D構造モデルに基づくプレート境界での固着・す べりに対するグリーン関数を使用し、プレート間固着域の推定を実施した。Tomita et al. (2022)³⁾の構築した逆解析手法を、Nishimura et al. (2018)⁴⁾が用いた陸上 GNSS 観測及び海底 GNSS-A 観測に基づく西南日本の変位速度場に対して適用し、プレート境 界におけるすべり欠損分布とその誤差分布の推定を、海陸の地殻変動データの重みパ ラメターの最適化と同時行った。

(c) 業務の成果

昨年度作成した全国一次地下構造モデルに基づく有限要素法計算のためのメッシュ の中に分岐断層をすべり面として設定したうえで、スプライン関数を基底として表現 された分岐断層面における単位すべり分布に対する、地表面での変位応答の計算を地 球シミュレータ上で実施した(図2-2-①-2)。スプライン関数を配置する位置を 変えていき、走向方向及び傾斜方向の単位すべりそれぞれに対するグリーン関数を得 た(図2-2-①-3)。また、昨年度と同様、作成した DEM データをそのまま用いた 場合、複数の層の物性値を一つにまとめた場合、及び、すべての層の物性値を同じにし た場合について計算を行い、物性の与え方によるグリーン関数の違いを把握できるよ うにした。

南海トラフ沈み込み帯のプレート境界面上におけるすべり欠損分布を誤差の分布と ともに推定した(図2-2-①-4)。現実的な3D構造モデルに基づくグリーン関数 を用い、また、海陸のデータの重みを自動的に最適化する手法を用いた結果、内陸のブ ロック運動を考慮せずとも、ある程度妥当なすべり欠損分布を推定することができた。

33

図2-2-①-1 南海トラフ沿いの構造探査測線(黒実線・緑実線)に沿って取得され た構造断面から構築した分岐断層面。等深線は300m間隔。各測線において読み取った分 岐断層の上端(海底面と分岐断層面の交点)及び下端(プレート境界面と分岐断層面の交 点)の位置を赤丸及び青丸で示した。測線の位置を含め背景の地図はNakamura et al. [2022]からの抜粋。

図2-2-①-2 構築した分岐断層面上に配置したスプライン関数のノード配置(計 134点)。それぞれの位置に頂点を持つスプライン関数で走向・傾斜方向のすべり分布を 与えて地表・海底での変位を計算し、グリーン関数を得た。

図2-2-①-3 図2-2-①-2の41(上段)と81(下段)のノードに傾斜方向の すべりを与えた場合の地表・海底での変位。左は水平成分、右は上下成分を示す。

図2-2-①-4 海陸の観測点における変位速度から推定したすべり欠損レート (SDR; Slip Deficit Rate)の分布 (左)と、地図中のA~D各点での推定すべり欠損値の頻度 分布 (右)。左図の黒矢印が入力した観測値、緑矢印が推定されたすべり欠損分布からの 計算値。

(d) 結論ならびに今後の課題

本業務により、精密な3D構造モデルに基づいた有限要素法モデルを用いてプレー ト境界面に加えて南海トラフ近傍の分岐断層面における固着・すべり分布の把握する ために必要なグリーン関数を整備することができた。次年度、今回計算したグリーン 関数を用いた解析を実施して、現状の海陸の観測網で取得されうる地殻変動データに よる、プレート境界と分岐断層におけるすべりの識別可能性を検討する。

本年度推定したプレート間のすべり欠損分布については、次年度早急に論文による 公表を行うが、誤差の推定結果の可視化や今後新しい変位速度場データが得られた際 に随時再推定を行うシステムの構築を検討する必要がある。

(e) 引用文献

 Park, JO., and S. Kodaira (2012). Seismic reflection and bathymetric evidences for the Nankai earthquake rupture across a stable segmentboundary. Earth Planets Space, 64, 299-303, doi:10.5047/eps.2011.10.006.
 Nakamura, Y., K. Shiraishi, G. Fujie, S. Kodaira, G. Kimura, Y. Kaiho, T. No, and S. Miura (2022). Structural anomaly at the boundary between strong and weak plate coupling in the central-western Nankai Trough. Geophys. Res. Lett., 49, e2022GL098180, doi:10.1029/2022GL098180.
 Tomita, T., T. Iinuma, R. Agata, and T. Hori (2021). Development of a Trans-Dimensional Fault Slip Inversion for Geodetic Data, J. Geophys. Res., 126, e2020JB020991, doi:10.1029/2020JB020991.
 Nishimura, T., Y. Yokota, K. Tadokoro, T. Ochi (2018). Strain partitioning and interplate coupling along the northern margin of the Philippine Sea plate, estimated from Global Navigation Satellite System

and Global Positioning System-Acoustic data, Geosphere, 14, 535-551, doi:10.1130/GES01529.1

- 発表した成果(発表題 発表者氏名 発表した 国内・ 発表した場所 目、口頭・ポスター発表 (学会等名) 時期 外の別 の別) Slip deficit rate Plata-Martínez AGU 2022 Fall 2022.12 国外 R. 0. and slow earthquake Meeting T. Iinuma distribution at the Nankai Trough (ポス F. Tomita ター) T. Nishimura R. Agata T. Hori
- (f) 成果の論文発表・口頭発表等
- 1) 学会等における口頭・ポスター発表

2) 学会誌・雑誌等における論文掲載 なし

(g)特許出願、ソフトウエア開発、仕様・標準等の策定

1) 特許出願

- 2) ソフトウエア開発
 - なし
- 3) 仕様・標準等の策定
 - なし

②固着・すべり分布の即時推定

(a) 業務の要約

南海トラフにおける巨大地震震源域の様々な時間帯域におけるプレート間固着・すべり の現状把握を実現し、情報発信するために、現実的な3D構造モデルに基づいた、プレー ト境界及び分岐断層等の海域断層を含めた固着・すべりを、3D構造モデルの不確実性を 含む、推定の曖昧さとともに定量化するシステム開発を行う。

上記目的を達成するために本年度は、推定された断層すべりが持つ誤差を定量評価する とともに、その推定において断層すべりが自己相似性を持つという先験情報を反映させる ための技術開発を実施した。さらに、本プロジェクトで構築を進めてきた三次元のグリー ン関数(3Dグリーン関数)を用いた、正確な地殻変動場の再現を実現するための数値実験 による評価を行った。また令和5年2月13日に REGARD の開発・運用を行っている国土地 理院測地観測センター電子基準点課と打ち合わせを行ない、本研究課題の進捗状況につい ての報告及び議論を行った。

(b)業務の実施方法

プレート間の固着、すべりを限られた測地観測データから推定するとき、得られた断層 すべりには大きな推定不確実性が内在する。特に断層すべり分布を求める際には、離散化 した小断層の数が使用するデータ数よりも大きい劣決定問題であることが多い。こうした 問題を安定して解くためには先験情報などに基づいた制約により、問題を正則化する必要 がある。正則化の手法として、ラプラシアン平滑化が最もよく用いられる。これはすべり の空間2階微分のL2ノルム最小化を条件とする拘束であり、断層面上でのすべり量の変 化率を最小化することで平滑化されたすべり分布を獲得できる。同平滑化は、断層上の隣 接する場所で応力降下量が極端に異なった値を取らないという先験情報をラプラシアンと いう形で数学的に表現したものとも言い換えられる。一方、ラプラシアン平滑化を含むL2 ノルム平滑化拘束では、すべりが生じていない小断層でも微小なすべりを推定する特徴が あるとの報告¹¹もある。また、断層すべりが自己相似性を持つという特徴を活用した拘束 手法も存在する。Mai and Beroza (2002)²⁾では、さまざまな地震において推定されたすべ り分布モデルを解析し、それらが von Karman の自己相関関数によって近似される自己相

なし

似性を持つことを示した上で、さらに既往地震のすべり分布をコンパイルすることで、von Karman の自己相関関数におけるハイパーパラメータである相関距離とハースト指数のマ グニチュードに対するスケーリング則を構築している。また、Amey et al. (2018)³⁾ では、 同スケーリング則に従う von Karman の自己相関関数を正則化拘束に用いるすべり分布推 定手法を開発した。一方、同スケーリング則の構築においてはマグニチュードが8を超え る巨大地震がほとんど含まれていないことなど、スケーリング則自体に大きな不確実性が 含まれている。

こうした背景のもと、本年度は von Karman の自己相関関数による制約を与えたすべり 分布推定において、これまでハイパーパラメータとして扱われていた相関距離も同時推定 する手法を開発した。同問題は、複数の非線形パラメータを同時に推定することになる。 そのため、開発した手法ではベイジアン逆解析を採用した。さらにパラメータ数の増加に ともなう収束性の悪化を克服するために、サンプリング手法として Hamiltonian Monte Carlo法 (HMC法)を採用した。開発した手法の妥当性を検証するために、まず相関距離を 走向方向に 100km、 傾斜方向に 50km と仮定したすべり分布を作成した。この時、傾斜角 は 10 度とし、低角逆断層型のプレート境界型地震を仮定した。相関距離を同時推定するこ とを目的としたため、この数値実験では観測点を 10km 間隔で満遍なく配置した。また、実 際の南海トラフでの巨大地震に近い検証として、1707 年宝永地震の地震時すべり(図2-2-2-1)を想定したデータセットに対しても適用し、その制度評価を行った。なお、 ここで仮定した地震時すべり分布は必ずしも von Karman の自己相関関数に従うすべり分 布ではない。そのため、相関距離の比較においては、Mai and Beroza (2002)が構築したス ケーリング則から計算される相関距離の値をその比較対象として用いた。

また、これまでに本プロジェクトで構築を進めてきた三次元のグリーン関数(3Dグリ ーン関数)を用いた、正確な地殻変動場の再現を実現するための数値実験による評価を行 った。具体的には 1707 年宝永地震の地震時すべりを参考に3Dグリーン関数によって地 表面変位を計算し、それにノイズを加えた後、均質半無限弾性体のグリーン関数⁵⁰によっ てすべり分布の復元を試みた。推定においては、上で述べた von Karman の自己相関関数に よる正則化拘束を適用した HMC 法によるサンプリングを用いた。これによって、現実を反 映していないグリーン関数を用いた場合にどのような偽像が出現しうるかについて定性的 な評価を行った。

また令和5年2月13日に REGARD の開発・運用を行っている国土地理院測地観測センタ 一電子基準点課と打ち合わせを行ない、本研究課題の進捗状況についての報告及び議論を 行った。

(c) 業務の成果

図2-2-2)-2に相関距離を仮定して作成した地震時すべり分布を開発した手法で、 相関距離を含めて同時推定した結果を示す。本手法ではHMC法によるサンプリングを行っ ているため、結果は事後確率分布の最頻値に基づいて描画している。結果及び真値との残 差分布を見ると、得られた最頻値モデルは与えたすべりをよく説明していることが分かる。 また、同時に推定した相関距離の事後確率分布(図2-2-2)-3)を見ると、与えた相関 距離の値をピークに含むような結果が得られている。この結果は、これまでハイパーパラ メータとして扱ってきた相関距離を同時推定できることを示す結果である。

図2-2-②-4に1707年宝永地震の地震時すべりを想定したデータセットに対して、 開発した手法を適用して推定された地震時滑り分布を示す。結果及び真値との残差分布を 見ると、得られた最頻値モデルは与えたすべりをよく説明する。また、同時推定した相関 距離の事後確率分布(図2-2-②-5)を見ると、走向方向についてはスケーリング則 が最頻値に近いところに位置しているのに対し、傾斜方向についてはスケーリング則の値 よりも大きな値に最頻値が位置することが分かった。この原因としては、Mai and Beroza (2002)によるスケーリング則自体がマグニチュード8を超えるイベントをほとんど含まな い形で構築されていること、プレート境界型地震ではプレートの沈み込み角度などによっ て地震発生層の幅などが沈み込み帯毎に大きく異なることなど、スケーリング則自体の不 確実性を反映している可能性があると考えている。一方、今回の検証では陸域のみに観測 点が存在し、海溝軸近傍のすべりに対する感度が低い。すなわち、推定される相関距離は、 データが分解できるすべりの空間解像度を反映している可能性がある。今後、推定される 相関距離の妥当性や物理的な意味などの検討が必要であると考える。

図2-2-②-6に1707 年宝永地震の地震時すべりを参考に3Dグリーン関数によっ て地表面変位を計算し、それにノイズを加えた後、均質半無限弾性体(0kada, 1992)のグ リーン関数によってすべり分布の復元を試みた結果を示す。観測点配置による推定結果へ の影響を除去するために、観測点を海域にも稠密に配置した結果を見ると、地震時すべり の大きな領域の深部延長に負のすべりが生じていることが分かる。これは仮定したすべり 分布では与えていないものであり、現実から乖離したグリーン関数を用いることで生じた 虚像であると考えられる。すなわち、正確なすべり分布の推定には、正確なグリーン関数 の使用がきわめて重要であることが改めて明らかになった。

令和5年2月13日に REGARD の開発・運用を行っている国土地理院測地観測センター電子基準点課と打ち合わせを行ない、本研究課題の進捗状況についての報告及び議論を行う ことで、本プロジェクトで開発する技術の方向性について明確化することができた。

図2-2-2)-1 仮定した 1707 年宝永地震の地震時すべり分布。青い三角は仮定した GNSS 観測点の位置を示す。

図2-2-2-2推定されたすべり分布(最頻値を使用) (上段) と仮定したすべりとの残差(下段)。

図2-2-②-3 推定された相関距離。左図:走向方向の相関距離の事後確率分布。右 図:傾斜方向の相関距離の事後確率分布。図中の破線は仮定した相関距離の値を示す。挿 入値は上から平均値、中央値、最頻値、95%信用区間幅をそれぞれ示す。

図2-2-2-2-4 開発した手法で推定されたすべり分布(左図)と仮定したすべりとの 残差(右図)。

図2-2-2)-5 推定された相関距離。左図:走向方向の相関距離の事後確率分布。右図: 傾斜方向の相関距離の事後確率分布。図中の破線はMai and Beroza (2002)によって構築 されたスケーリング則に基づく相関距離の値を示す。挿入値は上から平均値,中央値,最頻 値,95%信用区間幅をそれぞれ示す。

図2-2-②-6 3Dグリーン関数に基づいて計算した地殻変動場から、均質半無限媒 質を用いて推定した地震時すべり分布。地震時すべりの深部延長を中心として負のすべり が生じていることが分かる。

(d) 結論ならびに今後の課題

南海トラフにおける巨大地震震源域の様々な時間帯域におけるプレート間固着・すべり の現状把握を実現し、情報発信するために、現実的な3D構造モデルに基づいた、プレー ト境界及び分岐断層等の海域断層を含めた固着・すべりを、3D構造モデルの不確実性を 含む、推定の曖昧さとともに定量化するシステム開発を行った。具体的には、推定された 断層すべりが持つ誤差を定量評価するとともに、その推定において断層すべりが自己相似 性を持つという先験情報を反映させるための技術開発を実施し、その精度検証を、数値実 験を中心として実施した。その結果、従来ハイパーパラメータであった相関距離も含めて 同時推定することに成功した。さらに、本プロジェクトで構築を進めてきた三次元のグリ ーン関数(3Dグリーン関数)を用いた、正確な地殻変動場の再現を実現するための数値実 験による評価を行った。今後は、3Dグリーン関数を用いつつ、開発した手法を実データ 等へ適用することで、プレート間のすべり・固着状態をどの程度把握できる能力があるの かについて、定量評価が必要である。 (e)引用文献

- Wang, L., Zhao, X., Xu, W., Xie, L., and Fang, N.: Coseismic slip distribution inversion with unequal weighted Laplacian smoothness constraints. *Geophysical Journal International*, 218(1), 145-162. https://doi.org/10.1093/gji/ggz125, 2019.
- 2) Mai, P. M., and Beroza, G. C. : A hybrid method for calculating near-source, broadband seismograms: Application to strong motion prediction. *Physics of the Earth and Planetary Interiors*, 137(1-4), 183-199. https://doi.org/10.1016/S0031-9201(03)00014-1, 2003.
- 3) Amey, R. M. J., Hooper, A., and Walters, R. J.: A Bayesian Method for Incorporating Self-Similarity Into Earthquake Slip Inversions. *Journal of Geophysical Research: Solid Earth*, 123(7), 6052-6071. https://doi.org/10.1029/2017JB015316, 2018.
- Okada, Y.: Internal deformation due to shear and tensile faults in a halfspace. Bulletin of the Seismological Society of America Seismological Society of America, 82(2), 1018–1040, 1992.

(f) 成果の論文発表・口頭発表等

1) 学会等における口頭・ポスター発表

発表した成果(発表題目、ロ	発表者氏名	発表した場所	発表し	国内·外
頭・ポスター発表の別)		(学会等名)	た時期	の別
ハミルトニアンモンテカル	山田太介	日本地球惑星科学	2022.5	国内
ロ法による断層推定および	太田雄策	連合2022年大会		
不確実性評価手法の開発	大野圭太郎			
(口頭)				
相関距離を未知とした自己	山田太介	日本測地学会第	2022.10	国内
相似性を断層すべりの先験	太田雄策	138回講演会		
情報としたすべり分布推定				
手法の開発 (口頭)				

2) 学会誌・雑誌等における論文掲載

掲載した論文(発表題目)	発表者氏名	発表した場所	発表した	国内·
		(学会誌・雑誌等	時期	外の別
		名)		
Impact of Ambiguity of	Murakami,S.	GeoHazards	2022.4	国外
Physical Properties of	T.,Ichimura			
Three-Dimensional Crustal	K. Fujita			
Structure Model on	T.Hori			
Coseismic Slip and	Y. Ohta			

Interseismic Slip Deficit				
in the Nankai Trough				
Region				
Comparison between the	Yamada, T.	Earth, Planets	2022.6	国外
Hamiltonian Monte Carlo	K. Ohno	and Space		
method and the	Y. Ohta			
Metropolis-Hastings				
method for coseismic				
fault model estimation				

(g)特許出願、ソフトウエア開発、仕様・標準等の策定

1) 特許出願

2) ソフトウエア開発

なし

- 3) 仕様・標準等の策定 なし
- ③ 浅部プレート境界の固着状態の推定(広帯域地震観測)
 - (a) 業務の要約

浅部スロー地震活動はプレート境界浅部におけるプレート間固着状態を把握する上 で有用な指標の1つである。本研究では浅部スロー地震活動が活発な南海トラフ中西部 において広帯域海底地震観測によりプレート境界浅部におけるスロー地震活動の詳細 な時空間把握を行う。また、プレート境界からの分岐断層付近に代表される非プレート 境界域における地震活動の時空間把握も行う。観測より得られるこれらの地震活動の時 空間変化を、現実的な3D構造モデルに基づいた、プレート境界及び分岐断層等の海域 断層を含めた固着・すべりを、3D構造モデルの不確実性を含む、推定の曖昧さととも に定量化するシステム開発に役立てる。

本年度は、上記目的達成のため、南海トラフ西部に位置する日向灘に昨年度設置した 海底地震計10台の回収を行った。また、新規の固有周期120秒の広帯域地震計を搭載 した海底地震計用レベリング装置3台の整備を行い、長期観測可能な海底地震計を9台 設置して観測を継続した。これらのうち、8台は小型広帯域海底地震計である。回収し た海底地震計には良好なデータが取得されていた。今回の観測期間中には目立ったスロ ー地震活動は発生していなかったものの、観測網の直下を含む複数の地震活動が取得さ れていることを確認した。

なし

(b) 業務の実施方法

南海トラフ中西部域ではトラフ近傍のプレート境界浅部域においてスロー地震の発 生が確認されており、特に海底観測によって活動特性が明らかになりつつある 1.2.3)。こ れらの浅部スロー地震活動の時空間変化はプレート間固着状態を反映していると考え られる。また、浅部スロー地震のうち、浅部低周波微動に関しては時間と共に発生領域 が移動するマイグレーション現象が確認されている ³⁾。これらは短期的なスロースリッ プの発生を示唆しておりぷ、南海トラフ中部域においては孔内間隙水圧観測の変化から もスロースリップの発生が推定されている 2)。浅部超低周波地震は波形解析からプレー ト境界地震と同様の発震機構であることが明らかになっており
1)、浅部低周波微動と浅 部超低周波地震が同期発生していることも明らかになっている ³⁾。これらの異なる周波 数帯域を持つ地震活動特性を総合的に理解するためには、海底で発生する地震の震源近 傍での広帯域観測が必要不可欠である。南海トラフ中西部では1年〜数年間隔でマイグ レーション現象を伴う比較的規模の大きな浅部スロー地震活動が発生しており、本研究 期間中にも複数回の浅部スロー地震活動が発生することが期待される。南海トラフ域で は、過去の地震の震源域内にプレート境界からの分岐断層が存在することが明らかにさ れ4)、地震発生様式やプレート間固着への影響が議論されている。そこで、浅部スロー 地震活動と非プレート境界域における地震活動の詳細な時空間変化を明らかにするこ とを目的として、南海トラフ中西部の浅部スロー地震震源域周辺に通常の地震から浅部 低周波微動、超低周波地震まで観測できる広帯域海底地震計を含めた稠密観測網を構築 することとした。

(c) 業務の成果

南海トラフ中西部のプレート境界浅部におけるスロー地震活動と非プレート境界域 における地震活動の詳細な時空間把握が本研究業務の目的である。これらの結果は、3 D構造モデルに基づいたプレート境界及び分岐断層等の海域断層を含めた固着・すべり を定量化するシステム開発に寄与する。本年度は、固有周期 120 秒の広帯域地震計 (Nanometrics 社 Trillium Compact)を搭載した海底地震計レベリング装置を導入して、 小型広帯域海底地震計 ⁵⁾ 3 台の整備を行った。その後、南海トラフ西部に位置する日向 灘に昨年度設置した海底地震計 10 台の回収を行うとともに、本年度整備した3 台のレ ベリング装置付き小型広帯域海底地震計に加え、固有周期 120 秒の小型広帯域海底地震 計5 台、固有周波数 1Hz の地震計を搭載した長期観測型海底地震計 1 台の計9 台の海底 地震計を新たに設置して、観測を継続した(図2-2-③-1~2、写真2-2-③-1 ~6、表2-2-③-1)。

44

図 2 - 2 - ③ - 1 回収した海底 地震計位置

令和3年度に設置され、令和4年度 に回収した長期観測型および小型 広帯域海底地震計10台の位置。青 丸は長期観測型海底地震計、赤丸は 小型広帯域海底地震計を示す。な お、図中のコンターは1000m間隔の 等水深線である。

図 2 - 2 - ③ - 2 設置した海底地震 計位置

令和4年度に設置された長期観測型お よび小型広帯域海底地震計 10 台の位 置。青丸は長期観測型海底地震計、赤 丸は小型広帯域海底地震計を示す。こ れらの海底地震計は、例 s5年度に回 収予定である。なお、図中のコンター は1000m間隔の等水深線である。

写真2-2-③-1 観測に使用した 研究船「第三開洋丸」

写真2-2-3-2 観測船に搭載さ れた海底地震計

写真2-2-3-3 今回新たに整 備した小型広帯域海底地震計と海底 地震計設置前準備作業

写真2-2-3-4 海底地震計投入

写真2-2-3-5 海底地震計回収

写真2-2-3-6 回収された海底地震計

知测上权	緯度		経度		水深	備考
観測尽名	度	分	度	分	m	
NK2202	31	10.73	132	26.13	2839	CBBOBS (120)
NK2203	31	23.11	132	31.09	2458	CBBOBS (120)
NK2204	31	29.73	132	44.88	2915	CBBOBS (120)
NK2205	31	14.85	132	47.60	3456	CBBOBS (120)
NK2206	31	07.77	133	04.42	4589	CBBOBS (120)
NK2207	31	22.85	133	01.86	3584	LOBS
NK2208	31	37.25	132	59.83	2779	CBBOBS (120)
NK2209	31	27.44	133	19.12	4870	CBBOBS (120)
NK2215	31	39.60	132	28.77	2454	CBBOBS (120)

表 2-2-3-1 海底地震計設置位置

備考欄の LOBS は固有周波数 1Hz の速度型地震計を搭載した長期観測型海底地震計、 CBBOBS は小型広帯域海底地震計で、120 は固有周期 120 秒の広帯域地震計を搭載している ことを示す。座標値は着底後の音響測量によって求められた着底位置である。

設置及び回収作業には、海洋エンジニアリング株式会社所属の第三開洋丸(2022年8月 10日宮崎港出港、同年同月13日宮崎港帰港)を使用した。なお、一部の回収作業は長崎 大学練習船「長崎丸」を用いて行われた(2022年8月2日実施)。本年度は昨年度よりプ レート境界浅部域におけるプレート間固着状況の把握に着目し、2015年5月~7月にか けて浅部低周波微動・超低周波地震活動が確認されている日向灘のスロー地震活動域付近 を観測対象域とした観測網を維持した。海底地震計の設置間隔は20~30 kmとし、特にト ラフ軸周辺における活動の有無を確認できるような観測網を構築している。同領域には別 プロジェクト(文部科学省災害の軽減に貢献するための地震火山観測研究計画(第2次) 課題番号 DPRI01⁶)により展開されている海底地震観測網と連携可能となるように観測点 を配置した。回収した海底地震計には良好なデータが取得されていた。今回の観測期間中 には目立ったスロー地震活動が発生していなかったが、回収された海底地震計記録は良好 であり、通常の地震が記録されていることを確認した(図2-2-3)。

図2-2-③-3 海底地震計による通常の地震記録例

観測網直下で発生した地震の海底地震計記録。9点分の上下動記録を示している。周波数 フィルターは施していない。気象庁による震源決定では、震源時は2022/05/04 05:32:18.77(日本時間)であり、震央は、東経132.4347度、北緯31.2127度、震源の深 さは63.72km、マグニチュードは2.9である。 本年度は、観測対象域において、2014年以降に実施された海底地震観測のデータを利 用して、設置された海底地震計の方位を Rayleigh 波粒子軌跡の解析から推定した¹¹⁾。 その結果、広帯域海底地震計(BBOBS)の大半が5°以下、長期観測型海底地震計(LTOBS) の約半数で12°以下であったが、推定誤差が20°以上となるLTOBS 観測点が見られた。 推定誤差の大きい観測点は水深が2,200mから2,600mの範囲に設置されており、水深が 浅いほど推定誤差が大きい結果となった。海洋 infragravity 波と雑微動のパワースペ クトル密度の関係や、海洋におけるノイズ源との比較・考察より、LTOBSの方位推定誤 差の水深依存性は、海底流が Rayleigh 波の水平動成分の SN 比を下げるとともに、コン プライアンスノイズが Rayleigh 波の上下動波形自体を歪めた結果であることを推察し た。本研究の結果は、Rayleigh 偏向波解析¹²⁾による方位推定誤差が海底の環境雑微動 レベルの指標となり得ることを実証した形となり、本プロジェクトで行われている海底 地震観測においても、水深依存性を持つ海底背景ノイズレベルが表面波や雑微動を用い た解析に影響を与える可能性を示唆した。

(d) 結論ならびに今後の課題

新たに固有周期 120 秒の広帯域地震計を搭載した海底地震計用レベリング装置3台 の整備を行った。日向灘において、昨年度設置した海底地震計 10 台の回収を行うとと もに、整備した小型広帯域海底地震計を含めた計9台の長期観測可能な海底地震計の設 置を行い、観測を継続した。回収した海底地震計には良好なデータが取得されていたが、 今回の観測期間中には目立ったスロー地震活動は発生していなかった。 今年度設置した 海底地震計は、海底地震計耐圧容器内の記録媒体にデータ収録されるため、データ取得 には次年度以降の海底地震計回収作業が必須である。今回は回収し得られたデータをも とに、プレート境界及びその周辺で発生していると考えられる通常の地震を主として、 スロー地震を含めた地震活動を把握し、浅部プレート境界域における解析を実施する。 地震活動の詳細な時空間把握のためには、継続的な観測ならびにスロー地震の帯域まで 記録可能な機材による観測が重要である。次年度以降においても、広帯域海底地震計を 含めた海底観測網を構築し、観測を実施する予定である。そのため、新たにレベリング 装置付き小型広帯域海底地震計の整備を行うことも計画している。さらに、観測対象域 において、2014 年以降に実施された海底地震観測のデータを利用して、Rayleigh 偏向 波解析による方位推定誤差が海底の環境雑微動レベルの指標となり得ることを実証し た。

(e) 引用文献

- Sugioka, H., Okamoto, T., Nakamura, T., Ishihara, Y., Ito, A., Obana, K., Kinoshita, M., Nakahigashi, K., Shinohara, M., and Fukao, Y.: Tsunamigenic potential of the shallow subduction plate boundary inferred from slow seismic slip, *Nature Geoscience*, 5 (6), 414-418, https://doi.org/10.1038/ngeo1466, 2012.
- 2) Yamashita, Y., Yakiwara, H., Asano, Y., Shimizu, H., Uchida, K., Hirao, S., Umakoshi, K., Miyamachi, H., Nakamoto, M., Fukui, M., Kamizono, M.,

Kanehara, H., Yamada, T., Shinohara, M., and Obara, K.: Migrating tremor off southern Kyushu as evidence for slow slip of a shallow subduction interface, *Science*, 348 (6235), 676-679, doi:10.1126/science.aaa4242, 2015.

- 3) Araki, E., Saffer, D. M., Kopf, A. J., Wallace, L. M., Kimura, T., Machida, Y., et al.: Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust. *Science*, 356(6343), 1157-1160, doi:10.1126/science.aan3120, 2017.
- 4) Park, J.-O., Tsuru, T., Kodaira, S., Cummins P.R., and Kaneda, Y.: Splay fault branching along the Nankai subduction zone, *Science*, 297, 1157-1160, doi:10.1126/science.1074111, 2020.
- 5) Shinohara, M., Yamada, T., Shiobara, H., and Yamashita, Y.: Development of Compact Broadband Ocean Bottom Seismometer for Monitoring of Slow Earthquakes, *Seism. Res. Lett*, 92(6), 3610-3625, https://doi.org/10.1785/0220210100, 2021.
- 6) 「災害の軽減に貢献するための地震火山観測研究計画」令和3年度成果報告書, http://www.eri.u-tokyo.ac.jp/YOTIKYO/OpenReport/R3/r3_kikanbetsu.pdf
- 7) Yamashita, Y., Shinohara, M., and Yamada, T.: Shallow tectonic tremor activities in Hyuga-nada, Nankai subduction zone, based on long-term broadband ocean bottom seismic observations, *Earth, Planets and Space*, 73(1), 196, https://doi.org/10.1186/s40623-021-01533-x, 2021.
- 8) Nakanishi, A., Takahashi, N., Yamamoto, Y., Takahashi, T,, Ozgur, Citak S., Nakamura, T., Obana, K., Kodaira, S., and Kaneda, Y.: Three-dimensional plate geometry and P-wave velocity models of the subduction zone in SW Japan: Implications for seismogenesis. In: Byrne T, Underwood MB, III, Fisher D et al. (eds) Geology and Tectonics of Subduction Zones: A Tribute to Gaku Kimura, vol 534. Special Paper of the Geological Society of America. https://doi.org/10.1130/2018.2534(04), 2018.
- 9) Yamamoto Y., Obana K, Takahashi T, Nakanishi A, Kodaira S, and Kaneda Y.: Imaging of the subducted Kyushu-Palau Ridge in the Hyuga-nada region, western Nankai Trough subduction zone. *Tectonophysics* 589:90-102. https: 10.1016/j.tecto.2012.12.028, 2013.
- 10) Tonegawa T., Yamashita Y, Takahashi T, Shinohara M, Ishihara Y, Kodaira S, and Kaneda Y.: Spatial relationship between shallow very low frequency earthquakes and the subducted Kyushu-Palau Ridge in the Hyuga-nada region of the Nankai subduction zone. Geophys J Int 222(3):1542-1554. https://doi.org/10.1093/gji/ggaa264, 2020.
- 11) Sawaki, Y., Yamashita, Y., Ohyanagi, S., Garcia, E. S. M., Ito, A., Sugioka, H., Takahashi, T., Shinohara, M., and Ito, Y.: Seafloor depth controls seismograph orientation uncertainty, *Geophys. J. Int.*, 232, 2, 1376-1392, https://doi.org/10.1093/gji/ggac397, 2022.

12) Doran, A.K., and Laske, G.: Ocean-bottom seismometer instrument orientations via automated Rayleigh-wave arrival-angle measurements, *Bull. seism. Soc. Am.*, 107, 691-708., https://doi.org/10.1785/0120160165, 2017.

(f) 成果の論文発表・口頭発表等

1) 于云寺にわりる百頭・	ホハク売衣			
発表した成果(発表題	発表者氏名	発表した場所	発表した	国内·
目、口頭・ポスター発表		(学会等名)	時期	外の別
の別)				
Ocean bottom	山下裕亮	日本地球惑星	2022.6	国内
seismological	大柳修慧	科学連合2022		
observation at the	佐脇泰典	年大会		
boundary between slow	仲谷幸浩			
earthquakes and	八木原寛			
ordinary earthquakes	伊藤喜宏			
in Hyuga-nada, western	篠原雅尚			
part of Nankai				
Trough、(ポスター発表)				
Seismological Property	佐脇泰典	日本地球惑星	2022.6	国内
and Structure beneath	山下裕亮	科学連合2022		
the Seafloor at the	大柳修慧	年大会		
Hyuga-nada, Estimated	Emmanuel Soliman			
Using Ocean Bottom	Garcia			
Seismographs、(ポスタ	伊藤亜妃			
ー発表)	杉岡裕子			
	高橋努			
	篠原雅尚			
	伊藤喜宏			
日向灘海底地震観測記録	佐脇泰典	日本地震学会	2022.10	国内
から得られる自己相関関	山下裕亮	2022年秋季大		
数の時空間的特徴、(ポス	大柳修慧	숲		
ター発表)	Garcia Emmanuel			
	Soliman			
	篠原雅尚			
	伊藤喜宏			

1) 学会等における口頭・ポスター発表

2) 学会誌・雑誌等における論文掲載

掲載した論文(発表題目)	発表者氏名	発表した場所	発表した	国内 ·
		(学会誌・雑誌	時期	外の別
		等名)		
Seafloor depth controls	Sawaki, Y.	Geophys. J.	2022.10	国外
seismograph orientation	Y. Yamashita	Int.		
uncertainty broadband	S. Ohyanagi			
ocean bottom seismic	E. S. M. Garcia			
observations	A. Ito			
	H. Sugioka			
	T. Takahashi			
	M. Shinohara			
	Y. Ito			

特許出願、ソフトウエア開発、仕様・標準等の策定

- 1) 特許出願
 - なし
- 2) ソフトウエア開発
 - なし
- 3) 仕様・標準等の策定

なし