3.3 海域における断層モデルの構築

(1)業務の内容

- (a) 業務題目 海域における断層モデルの構築
- (b) 担当者

所属機関	役職	氏名
国立研究開発法人防災科学技術研究所	領域長	藤原 広行
	総括主任研究員	平田 賢治
	主任研究員	中村 洋光
	主幹研究員	大角 恒雄
	主任研究員	森川 信之
	主任研究員	前田 宜浩

(c) 業務の目的

サブテーマ(2)で再解析・解釈して求めた日本周辺海域の3次元断層分布から、断層 面の広がりが大きい主断層を抽出し、断層モデルを構築する。M7程度以上であると推 定されるもので、且つ、津波や地震動の記録が存在する地震の震源断層と考えられる ものについては、地震動と津波のシミュレーションを行うことにより、構築した断層 モデルの妥当性を検証する。モデル構築及びシミュレーションについては、必要に応 じて地震調査研究推進本部地震調査委員会の下に設置された評価部会等に報告し、そ の議論も踏まえて進める。また、断層分布と地殻内の変形構造との整合性を確認する。

- (d) 7 ヵ年の年次実施業務の要約
- 1) 平成 25 年度:

サブテーマ(1)でのDB構築と平行して、断層モデルの構築手法を検討した。

2) 平成 26 年度:

解釈を終えた日本海の断層分布から主断層を抽出、津波や地震動の記録が存在する M7 程度以上の断層モデルについて、強震動や津波のハザード評価に資する検討を行う。

3) 平成 27 年度:

解釈を終えた日本海の断層分布から主断層を抽出、津波や地震動の記録が存在する M7 程度以上の断層モデルについて、強震動や津波のハザード評価に資する検討を行う。

4) 平成 28 年度:

解釈を終えた南海トラフ・南西諸島海域の断層分布から主断層を抽出、津波や地震 動の記録が存在する M7 程度以上の断層モデルについて、強震動や津波のハザード評 価に資する検討を行う。断層モデル例を公開システムの仕様検討担当のサブテーマ (1)に提供を行う。 5) 平成 29 年度:

解釈を終えた南海トラフ・伊豆小笠原海域の断層分布から主断層を抽出、津波や地 震動の記録が存在する M7 程度以上の断層モデルについて、強震動や津波のハザード 評価に資する検討を行う。

6) 平成 30 年度:

解釈を終えた日本海溝・十勝沖の断層分布から主断層を抽出、津波や地震動の記録 が存在する M7 程度以上の断層モデルについて、強震動や津波のハザード評価に資す る検討を行う。

7) 平成 31 年度:

解釈を終えた十勝沖・オホーツク海の断層分布から主断層を抽出、津波や地震動の 記録が存在する M7 以上の断層モデルについて、強震動や津波のハザード評価に資す る検討を行う。評価した断層モデル全体をとりまとめ、データ公開システム上での 検索・表示内容の検証を行う。

- (2) 平成 26 年度の成果
 - (a) 業務の要約

当該年度においては、津波や地震動の元となる断層モデルの構築手法を検討した。その 際、サブテーマ(1)、(2)の検討から得られる主断層の断層パラメータの確からしさ等の質 の違いに応じたモデル化を考慮した。また、構築した断層モデルの妥当性を、津波や地震 動のシミュレーションを用いて検証するための手法を検討した。具体的には、自治体の被 害想定を含む既往の津波波源の検討結果等を踏まえ、日本海で発生した過去の津波や地震 動の記録を中心に、系統的に収集・整理し、それらとシミュレーション結果を比較するこ と等により断層モデルの妥当性を検証する手法を検討した。

これらの手法を用いることで、次年度以降、抽出した断層について断層モデルの構築を 進める。

(b) 業務の実施方法

日本海地域の海域の活断層の活動によるものと考えられる既往の歴史地震津波の波源 にかかわる想定断層モデルを整理し、その結果を踏まえて、データが不完全な場合も考慮 し、本プロジェクトで提供される断層についてのデータを用いて断層パラメータの不確実 性を含む断層モデルを構築する方法を検討した。また、既往文献を参考に今回得られた断 層モデルに対し、津波シミュレーションを実施し、津波痕跡値の比較を行なった。断層モ デルに基づく地震動指標(震度など)を評価し、歴史資料あるいは観測資料との適合を確 認した。津波の予測では、日本海海域全域の津波予測計算用地形データ(海底及び沿岸で 遡上の可能性のある範囲を含む)を作成して計算を行った。さらに、震源不特定の地震の 断層モデルを設定するため、代表的な想定波源断層についてパラメータスタディを実施し、 日本海海域に設定した断層モデルの各パラメータの違いが沿岸の津波の波高にどれだけ影 響するかを検討した。 (c) 業務の成果

(I) 準備

①日本海海域における地震・津波に関する既往資料の収集整理

a) 概要

今年度の作業としては、昨年度の成果を用いて、既往地震のうちの代表的なもの(M7 クラス以上)について断層モデルの検証を行うための資料を整理した。

b) 収集整理結果

日本海における大規模地震に関する調査検討会報告書(2014)を参考に、日本海東縁 で発生した M7 クラス以上の地震を表 I.1-1 に示した。表 I.1-1 で示した既往地震のうち、 検証の対象とした地震は、1792 年北海道西方沖地震(M7.1)、1793 年鯵ヶ沢地震(M7.0)、 1804 年象潟地震(M7.0)及び 1833 年庄内沖の地震(M7.7)、1940 年神威岬地震(M7.5) 及び 1971 年サハリン西方沖地震(M6.9)の6つの地震を選定した。

図 I.1-a から図 I.1-f に、上述した 6 つの地震の震度分布と津波高さの分布を示した。

表 I.1-1 日本海東縁で発生した M7 クラス以上の地震。マグニチュードは、宇津(1999) 及び気象庁による(赤色の行は検討の対象とした地震)。

地震名	発生年月日	マグニチュード
1741年渡島大島津波	1741/08/29	-
1792年北海道西方沖地震	1792/06/13	7.1
1793年鯵ケ沢地震	1793/02/08	7.0
1804 年象潟地震	1804/07/10	7.0
1833 年庄内沖の地震	1833/12/07	7.7
1940年神威岬地震	1940/08/02	7.5
1964年新潟地震	1964/06/16	7.5
1971年サハリン西方沖地震	1971/09/06	6.9
1983年日本海中部地震	1983/05/26	7.7
1993年北海道南西沖地震	1993/07/12	7.8

図 I.1-a 1792 年北海道西方沖地震における既往地震の震度分布(1)と津波高さ分布(2) (日本海における大規模地震に関する調査検討会報告書、2014 から抜粋)

図 I.1-b 1793 年鰺ヶ沢地震における既往地震の震度分布(1,2)と津波高さ分布(3)(日本 海における大規模地震に関する調査検討会報告書、2014 から抜粋)

1804 年象潟地震 (M=7.0)

(3) 1804 年象潟地震(M=7.0)津波高さ分布
 ・津波高:羽鳥(1986)
 ・波源域:羽鳥・片山(1977)

図 I.1-c 1804 年象潟地震における既往地震の震度分布(1,2)と津波高さ分布(3)(日本海における大規模地震に関する調査検討会報告書、2014 から抜粋)

<u>1833年庄内沖の地震(M=7.7)</u>

図 6(3) 1833 年庄内沖の地震(M=7.7)津波高さ分布 ・津波高:羽鳥(1990) ・波源域:羽鳥・片山(1977)

図 I.1-*d* 1833 年庄内沖地震における既往地震の震度分布(1,2)と津波高さ分布(3)(日本 海における大規模地震に関する調査検討会報告書、2014 から抜粋)

・浑波高:渡辺(1996) ・波源域:羽鳥・片山(1977)

図 I.1-e 1940 年神威岬地震における既往地震の震度分布(1)と津波高さ分布(2)(日本海 における大規模地震に関する調査検討会報告書、2014 から抜粋)

図 I.1-f 1971 年サハリン西方沖地震における既往地震の津波高さ分布(1) 震度分布はな し(日本海における大規模地震に関する調査検討会報告書、2014 から抜粋)

本検討で対象とした地震、1792年北海道西方沖地震、1940年神威岬地震及び1971年 サハリン西方沖地震の震源域と、日本海における大規模地震に関する調査検討会報告書に よる断層モデルの位置を図I.1-2-aに、また1793年鰺ヶ沢地震、1804年象潟地震及び1833 年庄内沖地震の震源域と、日本海における大規模地震に関する調査検討会によって設定さ れた断層モデルの位置を図I.1-2-bに示す。図I.1-2から、1833年庄内沖の地震や1940 年神威岬地震の震源域付近に断層モデルが比較的多く設定されていることがわかる。

1940 年神威岬地震の断層モデルと本プロジェクト(サブテーマ(2))で設定された断層との関係は、表 I.1-3 に示す。

図 I.1-2-a 既往地震の波源域(黄)と日本海における大規模地震に関する調査検討会に よる断層モデル(青)の位置

(日本海における大規模地震に関する調査検討会報告書、2014から抜粋し波源域を加筆)

図 I.1-2-b 既往地震の波源域(黄)と日本海における大規模地震に関する調査検討会に よる断層モデル(青)の位置

(日本海における大規模地震に関する調査検討会報告書、2014から抜粋し波源域を加筆)

1940年神威岬地震の断層モデルを検証に用いるために、震源域に対応している断層モデルを整理した。震源域と日本海における大規模地震に関する調査検討会によって設定された断層モデルの位置との比較(図I.1-2-a)から、1940年神威岬地震の震源域付近にある断層モデルはF07、F08及びF09である。また、神威岬地震の主な既往研究に、Satake(1986)、Fukao and Furumoto (1975)、Okamura *et al.* (2005)らが検討した断層モデルがある。これらの断層モデルのパラメータを表I.1-3にまとめた。

日本海における大規模地震に関する調査検討会による断層モデル F07 と F08 の走向の 角度は、他の断層モデルの走向と比べ 180°の違いが生じている(**表 I . 1-3**)。また、Fukao and Furumoto (1975)の断層モデルの断層長さが他の断層モデルと比べ、およそ 2 倍長い。

表 I.1-3 1940 年神威岬地震の震源域付近で設定されている断層モデル のパラメータ

(日本海における大規模地震に関する調査検討会報告書、2014 に

断層 モデル名	出典	Mw	緯度 deg N	経度, deg E	上端深 さ,km	走向, deg	傾 斜,deg	すべり 角,deg	断層長 さ,km	断層 幅,km	平均す べり 量,m
	日本海		44.5843	139.555 6		176	45	54	29.0	17.9	
F07	調査検	7.4	44.3286	139.581 8	2.4	201	45	76	21.6	17.9	3.70
	討会		44.1416	139.485 6		167	45	48	25.3	17.9	
	日本海		44.1467	140.191 2		218	45	93	31.3	18.4	
F08	調査検	7.4	'.4 43.9197 139.950 2.0	189	45	77	20.9	18.4	3.75		
	討会		43.7285	139.910 6		153	45	63	23.1	18.4	
		7.6	43.6888	139.185 3	4.0	347	30	103	24.4	27.9	
F09	日本海調 査検討会		43.8979	139.116 6		2	30	104	29.2	27.9	4.78
			44.1640	139.129 8		347	30	103	18.8	27.9	
Fukao1975	Fukao and Furumoto ,1975	7.6	42.82	139.03	-	0	46	90	170	50	1.10
Satake198 6_E2	Satake, 1986	7.4	43.73	139.53	0.0	347	40	90	100	35	1.50
	Okomuro		44.57	139.34	-	22	45	-	42	16	1.64
Okamura2	otal	75	44.55	139.58	-	184	45	-	42	16	2.23
005	2005	7.5	44.17	139.48	-	162	45	-	37	16	2.74
2005		43.69	139.13	-	0	45	-	53	16	0.58	

Okamura et al. (2005)を加筆)

なお、1940 年神威岬地震の断層モデルと本プロジェクト(サブテーマ(2))で設定された 断層との関係は、

F07= HKD-38_M3_0108_E, HKD-22 (以下同じのため省略)

F08= HKD-34, HKD-35, HKD-36

F09= HKD-21

となる。

②津波予測計算用地形データの修正

a) 概要

検証方法の妥当性を評価するための津波予測計算に必要となる海底及び沿岸の地形デ ータについて、長崎県周辺の海域を新たに作成・追加した。

b) 修正したデータ

新たに作成・追加した長崎県周辺の海域を含む領域は、450m メッシュの領域 No. 10 (図 I. 2-2) と 150m メッシュの領域 No. 24 から No. 27 (図 I. 2-3) である。新たに作成・追加 した領域における座標やサイズなどの諸元を表 I. 2-2 と表 I. 2-3 に示す。地形データは表 I. 2-1 に示した資料や基礎データに基づき作成した。地形データの座標は、UTM 座標(53 帯)で、測地系は世界測地系である。また、データの取扱いの便を考え、擬東経+500,000m を与えた。

資料名	最小メッシュのデータの範囲、 各領域のメッシュサイズ、 座標系	発行年等
日本海の津波調査業務 (中央防災会議)	・北海道オホーツク海〜山口県の沿岸 ・1350m、450m、150m、50m メッシュ ・東経 139°を中心とした UTM 座標(旧測地)	平成 19 年 3 月
津波に関する防災アセ スメント調査(福岡県)	 ・福岡県沿岸 ・2430m、810m、270m、90m、30m、10mメッシュ ・平面直角座標系I系(世界測地) 	平成 24 年 3 月
海溝型地震津波想定に 関する報告	 ・長崎県沿岸 ・1350m、450m、150m、50m、25m、12.5mメッシュ ・平面直角座標系I系(世界測地) 	平成 24 年 3 月

表 I.2-1 地形モデル作成のための基礎データー覧

図 I.2-4 に各領域の位置を示す。波源域から沿岸域までを一括して計算するため、外 洋から陸域に近づくほど細かい格子間隔となるように 1:3 の割合で計算格子を細分化する 方法で地形モデルを構成し、外洋部から 1350m、450m、150m、50m の空間格子間隔で接続し た。格子間隔ごとの領域数は、新たに追加した領域を含めると以下のとおりになる。

- 1350mメッシュ領域 : 1領域
- 450mメッシュ領域 :10領域
- 150mメッシュ領域 : 27 領域
- 50mメッシュ領域 :55領域

収集した地形データに対して補間を行った。補間の方法は、収集した地形データから TIN(Triangulated Irregular Network:三角形不規則網)を作成し、線形補間により各計算 格子に対して格子中心での標高を与える手法を用いた(図I.2-1参照)。

図 I.2-1 TIN 法の概念図

X 1.2-2								- PR ->~ /
谷村 Na	メッシュ	南西端の位置		北東端	の位置	メッシ	上位接 続領域	
^{限攻 NO.} サイズ (m)		X 座標 (m)	Y 座標 (m)	X 座標 (m)	Y 座標 (m)	X 方向	Y 方向	領域 No.
0450-01	450	935,550	4,870,800	1,362,150	5,170,500	948	666	1350-01
0450-02	450	827,550	4,768,200	1,111,050	5,170,500	630	894	1350-01
0450-03	450	797,850	4,509,000	1,067,850	4,868,100	600	798	1350-01
0450-04	450	818,100	4,357,800	1,088,100	4,708,800	600	780	1350-01
0450-05	450	747,900	4,095,900	977,400	4,471,200	510	834	1350-01
0450-06	450	580,500	4,025,700	939,600	4,284,900	798	576	1350-01
0450-07	450	448,200	3,898,800	756,000	4,217,400	684	708	1350-01
0450-08	450	249,750	3,877,200	619,650	4,133,700	822	570	1350-01
0450-09	450	37,800	3,732,750	383,400	4,045,950	768	696	1350-01
0450-10	450	-176,850	3,547,150	179,550	3,941,350	792	876	1350-01

表 I.2-2 450m メッシュ領域のサイズ及び位置(赤色の行は新たに作成・追加した領域)

佰 trit No	メッシュ	南西端	の位置	北東端	の位置	メッシ	ュ個数	上位接 続領域
與埃NO.	(m)	X座標(m)	Y座標(m)	X座標(m)	Y座標(m)	X 方向	Y 方向	領域 No.
0150-01	150	1,219,050	4,896,000	1,345,050	4,993,200	840	648	0450-01
0150-02	150	1,119,150	4,892,850	1,258,650	5,002,650	930	732	0450-01
0150-03	150	1,043,550	4,939,200	1,161,450	5,066,100	786	846	0450-01
0150-04	150	941,400	4,988,250	1,082,700	5,125,050	942	912	0450-02
0150-05	150	965,250	4,881,150	1,060,650	5,010,750	636	864	0450-02
0150-06	150	947,250	4,785,300	1,051,650	4,911,300	696	840	0450-02
0150-07	150	900,000	4,733,550	1,035,900	4,860,450	906	846	0450-03
0150-08	150	836,550	4,647,600	949,950	4,766,400	756	792	0450-03
0150-09	150	835,200	4,572,450	939,600	4,706,550	696	894	0450-03
0150-10	150	891,900	4,516,200	1,059,300	4,660,200	1,116	960	0450-04
0150-11	150	873,900	4,391,550	960,300	4,566,150	576	1,164	0450-04
0150-12	150	870,300	4,294,350	952,200	4,432,050	546	918	0450-05
0150-13	150	825,750	4,189,050	929,250	4,318,650	690	864	0450-05
0150-14	150	751,050	4,098,600	906,750	4,278,600	1,038	1,200	0450-06
0150-15	150	641,700	4,059,900	794,700	4,176,900	1,020	780	0450-06
0150-16	150	614,250	4,061,250	731,250	4,209,750	780	990	0450-06
0150-17	150	565,200	3,966,300	672,300	4,100,400	714	894	0450-07
0150-18	150	479,700	3,917,700	607,500	3,994,200	852	510	0450-07
0150-19	150	376,200	3,917,700	499,500	3,989,700	822	480	0450-08
0150-20	150	270,900	3,900,150	392,400	4,037,850	810	918	0450-08
0150-21	150	190,800	3,833,550	314,100	3,947,850	822	762	0450-09
0150-22	150	89,100	3,791,700	228,600	3,886,200	930	630	0450-09
0150-23	150	64,350	3,738,150	147,150	3,829,050	552	606	0450-09
0150-24	150	27,900	3,695,650	139,500	3,827,950	744	882	0450-10
0150-25	150	-32,400	3,600,700	95,400	3,773,500	852	1,152	0450-10
0150-26	150	-66,150	3,774,850	23,850	3,871,150	600	642	0450-10
0150-27	150	-113,400	3,608,350	-29,700	3,712,750	558	696	0450-10

表 I.2-3 150m メッシュ領域のサイズ及び位置(赤色の行は新たに作成・追加した領域)

図 I.2-2 450m メッシュ領域の位置図(緑:新たに作成・追加した領域)

図 I.2-3 150m メッシュ領域の位置図(青:新たに作成・追加した領域)

図 I.2-4 各メッシュ領域の位置図

③ 断層モデルパラメータの不確実性に関する既往研究事例の整理

a) 概要

海域における断層モデルの構築手法の検討においては断層解釈の不確実性を踏まえた断 層モデルを構築する必要がある。そのため、これまでの研究事例において、海域における 断層の位置、走向、傾斜、すべり角度、すべり量、発生層厚さから決まる断層幅等パラメ ータを目的に応じて検討した事例を収集し整理した。

b) 対象とする文献

対象とした文献を以下の表 I.3-1にまとめた。

N o	文献名	発行年	著者
地震1	「全国を概観した地震動予測地図」報	2005	地震調查研究推進本部
	告書		地震調査委員会
津波 1	原子力発電所の津波評価技術	2002/10	土木学会
			原子力土木委員会
津波 2	確率論的津波ハザード解析の方法	2011/9	土木学会
			原子力土木委員会
津波 3	原子力安全基盤調査研究 津波波源モ	2010年度	原子力安全基盤機構
	デルの精度向上に関する研究		

表 I.3-1 不確実さに関するレビューの対象とした文献

c) 整理の方法

該当文献から目的に応じて不確実性を持たせた断層パラメータのばらつきの手法及び地 震動、津波波高等の結果に与えうる影響を抽出する。そのため、各文献において以下の各 項目を整理することとする。

- 1) 不確実性を持たせた断層パラメータ
- 2)パラメータのふり幅(最大、最小)及び刻み幅
- 3)結果に与えた影響度
- 4)その他

d) 既往文献事例

i) 地震1 「全国を概観した地震動予測地図」報告

「全国を概観した地震動予測地図」(地震調査推進研究本部地震調査委員会,2006)は、 日本全国の地震による強い揺れの危険性の評価を確率論的ハザード評価の手法を用いて実施したものであり、日本全国の範囲で様々な種類の地震を対象としたハザード評価として 参考となる既往研究である。以下に、「全国を概観した地震動予測地図」において不確実性 を持たせた断層パラメータとその取扱いについて説明する。

「全国を概観した地震動予測地図」では、地震の規模と震源の位置の不確実性の扱いに ついて、「震源断層を予め特定できる地震」と「震源断層を予め特定しにくい地震」で区別 している。「震源断層を予め特定できる地震」は長期評価によって震源断層が特定された主 要活断層帯で発生する地震や海溝型地震であり、規模や震源断層の位置を特定してハザー ド評価を行うが、断層パラメータの不確実性は陽には考慮されていない。一方で、「震源断 層を予め特定しにくい地震」は活断層が知られていないところで発生する内陸の浅い地震 や海溝型の中小地震などであり、地震の一つ一つについて事前に発生場所、規模、発生確 率を特定することが困難であるため、地震群としての特徴を確率モデルで表現している。 具体的には、あるマグニチュードの地震の発生確率を過去の観測記録から推定し、マグニ チュード毎の発生確率がb値0.9のG-R則に従うものと仮定してマグニチュード毎に分配 し、発生位置については特定の地域の範囲で空間的に均等な確率で発生するものとして確 率を計算している。

一方で、「全国を概観した地震動予測地図」では、地震動強さを距離減衰式とそのばらつき (標準偏差)を用いて評価しているが、断層のメカニズムやアスペリティ分布などの不確 実性が距離減衰式のばらつきの要因の一つとして扱われている。距離減衰式のばらつきの 要因は、大きく次の3つに分けられる。

- ・サイト特性
- · 伝播経路特性
- ·震源特性

ばらつきの要因をそれぞれ定量的に評価することは困難であるため、サイト特性によ るばらつきの検討として、2003年十勝沖地震を対象にしたばらつきの定量的検討でサイト 補正を行った比較をしている。ここで「サイト補正」とは、観測地点ごとの観測記録と距 離減衰式の推定値との比の平均値を「サイト係数」として、距離減衰式の推定値から差し 引く補正である。サイト補正前のばらつきが常用対数標準偏差で約0.22であったのに対し、 サイト補正後にはばらつきは約0.19となった。震源特性の不確実性に伝播経路特性の不確 実性を加えた結果ではあるが、ばらつきの大きさは常用対数標準偏差で約0.19と評価して いる。 ii) 津波1 原子力発電所の津波評価技術

断層パラメータの不確実性に関するパラメータスタディは、次の4つの領域を対象に 行われている。

- ・三陸沿岸(日本海溝沿い)
- ・熊野灘沿岸(南海トラフ沿い)
- ·日本海東縁部沿岸
- · 若狭湾沿岸

パラメータスタディの実施手順は次の通りである。まず概略検討として断層の位置を 動かしたパラメータスタディを実施して、対象地域で最も厳しい津波水位の結果が得られ る断層位置を特定する。次にその断層位置を基準として傾斜角・走向・すべり角などの断 層パラメータを変えることにより、詳細検討のパラメータスタディを実施する。最後に、 詳細検討において最大となった水位が既往最大の痕跡高を包絡しているか調べ、十分大き な津波を想定できているかを考察する。数値計算における基礎方程式には非線形長波理論 を用い、計算格子サイズは領域ごとに異なる。以下、本業務に関連する日本海海域のパラ メータスタディ結果をまとめる。

<日本海東縁部沿岸のパラメータスタディ>

日本海東縁部沿岸では、表I.3-2及び図I.3-1に示す基準断層を対象に詳細検討のパラ メータスタディを実施した。「上端深さ」「傾斜角」「走向」を対象にして次の条件でパラメ ータスタディを実施した。最小格子サイズは 200m である。

- ・上端深さ :0, 2.5, 5km
- 傾斜角 : 45°, 52.5°, 60°
- ・走向 :基準値±10°

表 I.3-2 日本海東縁部沿岸での基準断層パラメータ(土木学会、2002より抜粋)

走向(゜)	3°
d (km)	0
D (m)	9.44
δ (°)	60
傾斜方向	東傾斜
λ (°)	90

図 I.3-1 日本海東縁部沿岸の基準断層モデル設定位置(土木学会, 2002 より抜粋)

パラメータの変動範囲における最大水位の最大値と最小値の比(Hmax/Hmin)の頻度分 布図を図I.3-2に示す。走向の値が結果に与える影響度が最も大きく、最大で約2倍の違 いが生じる。3パラメータ全てを変えた場合には、最大で約2.8倍の違いが生じる。

図 I.3-2 日本海東縁部沿岸でのパラスタ結果(土木学会, 2002 より抜粋)

<若狭湾沿岸のパラメータスタディ>

若狭湾沿岸では、図I.3-3及び表I.3-3に示す基準断層を対象に概略検討のパラメー タスタディを実施し、このうち最も厳しい結果が得られた表I.3-4に示す断層パラメータ のケースで詳細検討のパラメータスタディを実施している。対象とした断層パラメータは 次の3つである。最小格子サイズは200mである。

- ・上端深さ :0, 2.5, 5km
- 傾斜角 : 75°, 82.5°, 90°
- ・すべり角 : 75°, 90°, 105°

概略検討パラメータスタディと詳細検討パラメータスタディの最大水位上昇量の最大 値の比較結果を図I.3-4に示す。地点によっては詳細検討パラメータスタディの最大値が 5%程度上回ることがあるが、全体的に上記の3パラメータを変化させることによる結果へ の影響度は小さい。

えⅠ.3-3 右狭湾での基準町層セナルのハフメーター頁(エ不字雲、	. 2002 より抜粋	:)
-----------------------------------	-------------	----

断層		AF1			AF2			AF3			AF4		
Mw		7.29		7.29			7.09			7.09			
L (km)		50			50			35			35		
W(km)		$15/\sin\delta$		$15/\sin\delta$			$15/\sin\delta$			$15/\sin\delta$			
d (km)		0		0			0			0			
$\theta(^{\circ})$	45				230			55			56		
δ (°)	90	67.5	45	90	67.5	45	90	67.5	45	90	67.5	45	
λ(°)	105-180	110-170	110-160	110-180	120-180	120-170	120-180	125 - 180	125 - 180	120-180	125 - 180	125 - 180	
$D(\mathbf{m})$	4.16	3.87	2.94	4.16	3.87	2.94	2.91	2.69	2.06	2.91	2.69	2.06	

断層		AF5			AF6		BF1			
Mw		7.09			7.00		7.29			
L (km)	35				30		50			
W(km)		$15/\sin\delta$			$15/\sin\delta$		$15/\sin\delta$			
d (km)	0			0			0			
$\theta(^{\circ})$	46			46 30				64		
δ (°)	90 67.5 45		90	67.5	45	90	67.5	45		
λ (°)	105-180	105-180 110-175 115-160			90-135	90-135	130-180	140-180	140-180	
D(m)	2.91	2.91 2.69 2.06		2.49	2.3	1.76	4.16	3.87	2.94	

表 I.3-4 若狭湾での詳細検討の基準断層パラメータ(土木学会, 2002 より抜粋)

断層	AF1
Mw	7.3
L (km)	50
$W(\mathbf{km})$	$15/\sin\delta$
d (km)	0
$D(\mathbf{m})$	4.16
δ (°)	90
θ (°)	45
2 (°)	105

BF1:通商産業省工業技術院地質調査所編 (1991)による。

図 I.3-4 若狭湾でのパラメータスタディ:概略検討と詳細検討の最大値の比較(土木学 会, 2002 より抜粋)

以上の4つの領域におけるパラメータスタディの結果は、次のようにまとめられている。

結果に与えた影響度

全体の傾向として、走向が最も大きく結果に影響を与えていた。走向についてのパラメ ータスタディを行わなかった若狭湾沿岸では、走向以外の3パラメータを変えても結果に 大きな違いは生じなかった。

なお、パラメータスタディ結果の最大値と最小値の比較のみのため、標準偏差などのば らつきの定量的な検討は行われていない。

・その他

この文献での検討は、最小格子サイズが80m~200mであり、地形が複雑な沿岸での津波 計算の精度が低い点を留意する必要がある。 iii) 津波2 確率論的津波ハザード解析の方法

土木学会の津波評価部会は平成14年の「原子力発電所の津波評価技術」(以下、土木 学会,2002)において、過去に海域で発生した地震に対する調査結果を取りまとめ、震源 メカニズムのばらつきの大きさについて検討した上で、震源メカニズムの不確実性が津波 計算結果にどの程度の違いを生むかを数値計算によるパラメータスタディを実施して検討 した。ここでは、土木学会(2002)の調査結果を整理する。日本海溝一千島海溝及び日本海 東縁部で過去に発生した地震の、既存断層パラメータのばらつきについての調査結果を表 I.3-5に示す。この結果を踏まえて断層パラメータの範囲を設定し、パラメータスタディ を実施している。

表 I.3-5 既存断層パラメータのばらつきの評価結果(土木学会、2002より抜粋)

海域	海域小区分		萩原マップ ⁶ が応する 海域区分	解析対象 データ	データ 数	- 走向(°)		すべり方向(゜)		すべり角(°)		傾斜角(゜)	
大区分						平均	標準開結	平均	標準定差	平均	標準定義	平均	標準巖
日本海溝・ 千島海溝 (南部)	千島海 溝南部	41°N以北	G1	プレート間 逆断層地震 のハーバー ド解	43	222.3	14.1	304.3	10.8			21.7	6.4
	日本海 溝北部	38~41 ° N	G2		29	185.4	12.1	295.0	7.7			16.0	5.7
	日本海 溝南部	35.3∼38 ° N	G3		14	204.2	13.5	292.3	12.2			21.1	5.1
日本海 東縁部	北部	40°N以北	F	断層モデル	6(3)	-2.7	9.6			91.7	11.3	43.3	14.0
	南部	40°N以南 138°E以東	¹		5(3)	25.2	6.3			96.0	13.4	57.0	6.7

(注)・日本海溝および千島海溝(南部)沿い海域では、ハーバード CMT による発震機構解(1976年1月 ~2000年1月に発生した M_n6.0以上,深さ 60km 以下の地震)を解析対象とした。

日本海東縁部では、発震機構解の節面の特定が困難であるため、津波の痕跡高を説明できる断層モデルのパラメータを用いてばらつきを評価した。

・「すべり方向」は、スリップベクトルの水平投影が真北から時計回りになす角度である。

・日本海東縁部のデータ数のうち括弧内の値は、走向に対して適用した1枚断層換算のモデル数である。

・日本海東縁部(南部)の新潟地震モデルには Noguera and Abe (1992)を採用している。天保山形 沖地震(1833)は沖合・沿岸近くの両モデルを採用している。

・ 萩原マップは萩原尊禮編(1991)による。

土木学会(2011)による「確率論的津波ハザード解析の方法」では、地震動について行われてきた確率論的ハザード解析の手法を津波被害に対して適用する方法の提案をしている。 以下に、確率論的津波ハザード解析で提案された不確実性の扱い方について記す。

まず、確率論的津波ハザード解析は不確実性を「偶然的ばらつき」と「認識論的不確定 性」とに分けて考えている。偶然的ばらつきは、現実に存在しているが現状では予測不可 能と考えられるものであり、ハザード評価においてばらつきとして一本のハザード曲線で 評価される。認識論的不確定性は、研究が進展すれば確定できるが現状では予測不可能な ものと考えられる不確実性である。これに対しては、判断が分かれる事項(分岐)に関し て複数の選択肢を設定し、各分岐に重み付けすることで重みの異なる複数のハザード曲線 群を算出して評価する、「ロジックツリー手法」を用いる。

ロジックツリー手法を用いる場合、考慮する地震の数が多くなると分岐の組合せの数が 膨大となり現実的に解析が不可能となる場合が多い。そこで土木学会(2011)では、分岐の 組合せを求める際に乱数を用い、各分岐の重みによってサンプルして必要な数のハザード 曲線群を作成し統計処理する、「モンテカルロ手法」をとっている。モンテカルロ手法を用 いることで、離散的な分岐でなくても、連続的分布の分岐から確率によって組み合わせを 求めることができる。

土木学会(2011)は確率論的津波ハザード解析の手法の提案を主にするものであり、ケー ススタディとして三陸北部の震源域による津波ハザード評価例を示しているが、断層パラ メータの不確実性が津波高さに与える影響のパラメータスタディなどは特に行っていない。 断層パラメータの不確実性の扱い方としては、日本海東縁部海域、海域活断層、大地震以 外の地震(背景的地震)でのハザード評価方針を示している。断層パラメータの不確実性 は基本的に認識論的不確定性に分類され、連続的分布の分岐に対してモンテカルロ手法に よるサンプリングで評価する、としている。

以下では、日本海東縁部海域、海域活断層、背景的地震についての、断層パラメータの 不確実性の扱いについてまとめる。なお、津波水位の計算を伴うパラメータスタディは実 施されていないため、結果に与えた影響度の項目は該当しない。 <日本海東縁部海域>

地震調査研究推進本部「日本海東縁部の地震活動の長期評価について」(2003)等の知見 を基に断層パラメータの基準値を設定し、傾斜角、傾斜方向、走向の3項目に対し不確実 性を考慮している。

・傾斜角

30~60°の一様分布とする。

·傾斜方向

西傾斜と東傾斜を考える。分岐の確率は両者で等しいものとする。

・走向

活動域の走向に対して±20°の範囲にほぼすべての地震が含まれることを前提に、標準 偏差の範囲を活動域主軸の走向±10°とする。確率分布形状は正規分布とする。

その他の断層パラメータの設定方法一覧を表 I.3-6 に示す。

表 I.3-6 日本海東縁部海域の断層パラメータ設定方法(土木学会, 2011 より抜粋)

断層長さ	スケーリング則に基づき, <i>Mw</i> から求める。
幅	地震発生層の厚さ(15km)を考慮し傾斜角に応じて決める。
すべり量	$\log M_0(N \cdot m) = 1.5Mw + 9.1, D = M_0/\mu LW$ により算出する。
上縁深さ	0km とする。
走向	海底地形の走向に基づき設定する。
傾斜角	30~60°とする。西傾斜と東傾斜の双方を考慮する。
すべり角	90°とする。
剛性率	3.5×10 ¹⁰ (N/m ²)とする。
	幅(地震発生層厚さ)に上限あり。
	スケーリングの変曲点を境に, Mwが大きいとき武村(1998)の関係
	$\log L(km) = 0.75Mw - 3.77,$
スケーリン	$L \propto D, W = const.$
グ則 1	が, <i>Mw</i> が小さいとき
	$W = \frac{2}{3}L, L \propto W \propto D$ の関係が成り立ち、両者が連続的に接続するものとする
	推本の地展期で測手法(「レンヒ」)などで用いられる
スケーリン	$M_0[N \cdot m] = (S[km^2]/4.24 \times 10^{-11})^2 \times 10^{-7}$
グ則 2	(Wells and Coppersmith(1994)などのデータに基づく入倉・三宅(2001)の提案式,
	地震モーメント 7.5×10 ¹⁸ N・m 以上の地震に適用する)を適用する。

図 I.3-5 日本海東縁部海域における鉛直断面内の断層パターン(土木学会, 2011 より抜粋)

<海域活断層>

個々の海域活断層に関する情報や地震動評価との整合性を踏まえることが必要である ため、断層の長さや走向といった断層パラメータは調査による情報に則って設定し、次の 4つの断層パラメータの不確実性を考慮している。

・断層上端深さ

0~5kmの一様分布とする。

·傾斜角

西南日本では45~90°、中越地方では30~60°の切断正規分布とする。

・すべり角

広域応力場から断層毎に範囲を設定する。確率分布は一様分布とする。

·倾斜方向

褶曲のように傾斜方向が未知の場合には両方向を設定し、等確率とする。

<背景的地震>

背景的地震の断層パラメータは、地震動評価と同じ位置に断層の中心を設定し、以下の 4つの断層パラメータについては、周辺断層のパラメータを基準値として不確実性を考慮 し、設定している。

・断層上端深さ

断層面の範囲を地表~地震発生層(15km)下端までとし、確率を一様分布とする。

·傾斜角

西南日本では45~90°、中越地方では30~60°の切断正規分布とする。

・すべり角

広域応力場から断層毎に範囲を設定する。確率分布は一様分布とする。

・走向

周辺断層から基準値を決定し、±20°程度のばらつきを一様分布で考慮する。

なお、結果に与えた影響度については公表されていない。

iv) 津波3 原子力安全基盤調査研究 津波波源モデルの精度向上に関する研究 a) 不確実性を持たせた断層パラメータ

断層のすべり分布を離散的な小断層に分割したときの分割数

b)パラメータのふり幅(最大、最小)及び刻み幅

・2007 年新潟県中越沖地震(Mw6.7) 40 枚を基準として、24 分割、20 分割、16 分割、 12 分割、8 分割、4 分割、2 分割、一様すべりの波源モデルの比較

・2003年十勝沖地震(Mw.8.0) 48枚を基準として、12分割、8分割、4分割、一様 すべりの波源モデルの比較

c)結果に与えた影響度

・非一様なすべり分布と一様すべり分布モデルによる違い

各地震すべり分布モデルの違いが与えた波高への影響度を比較した(表 I.3-7、表 I.3-8)。 また、空間的な分布の違いを図 I.3-6 と図 I.3-7 に示す。全体的な傾向は一様モデルで も表現可能であるが、局所的な沿岸波高を再現することは一様モデルでは難しい。

表 I.3-7 2007 年新潟県中越沖地震の隆起・沈降分布

	隆起・沈降	最大	沿岸津波高					
	形状	隆起量	押し	引き				
ー様すべり分布モデ ル	緩い傾斜	20cm 弱	全体傾向は一致するが、非一様					
非一様なすべり分布 (40 枚モデル) 長さ 4km×幅 4km	鋭い傾斜	40cm 弱	モノルに存在す な(2倍程度)値 はな	する局所的に大き 直が一様すべりに ない。				

表 I.3-8 2003 年十勝沖地震の隆起・沈降分布

	隆起・沈降	最大	沿岸津波高				
	形状	隆起量	押し	引き			
ー様すべり分布モデ ル	海溝軸沿い	20cm 弱	全体的に非一様モデルのほう;				
非一様なすべり分布 (40 枚モデル) 長さ 20km×幅 20km	陸側	60cm 弱	 高め。回程度の地域もあるので K 倍等の対処では調整できな い。 				

図6 (a) 2007 年新潟県中越沖地震津波の波源域を40 枚の小断層に分割した波源モデル(基礎 波源モデル)における隆起・沈降量分布.赤線は隆起量のコンターを表し,その間隔は5 cm であ る.緑色の矩形は,設置した小断層を表し緑色の番号はその小断層番号を表す.(b) 波源域を1 枚断層(一様すべり)で表現したさいの隆起・沈降量分布.

図 7 2007 年新潟県中越沖地震津波の波源域を 40 枚の小断層に分けたモデル(基礎波源モデ ル)と1 枚断層(一様すべり)のモデルによる計算沿岸津波高さの比較.(a)本州沿岸,(b)佐渡島 北側沿岸,(c)佐渡島南側沿岸

図 I.3-6 2007 年新潟県中越沖地震 1 枚と40 枚で表現した場合の隆起/沈降分布と沿岸津 波高さ分布(原子力基盤機構, 2010 より抜粋)

図8 (a) 2003年十勝沖地震津波の波源域を48枚の小断層に分割した波源モデル(基礎波源モ デル)における隆起・沈降量分布.(b)波源域を1枚断層(一様すべり)で表現したさいの隆起・沈 降量分布.

図 9 2003 年十勝沖地震津波の波源域を 48 枚の小断層に分けたモデル(基礎波源モデル)と1 枚断層(一様すべり)のモデルによる計算沿岸津波高さの比較.

図 I.3-7 2003 年十勝沖地震 1 枚と 40 枚で表現した場合の隆起/沈降分布と沿岸津波高さ 分布(原子力基盤機構, 2010 より抜粋)

・波源モデル分割数による違い

沿岸の津波高さの分割数による感度を見るため、基礎波源モデル(2007 年 40 枚、2003 年 48 枚)に対して分割数を変えた場合の幾何平均 K 及び幾何標準偏差 κ を算出している

(表I.3-9、表I.3-10)。分割数を変えたモデルの断層すべり量は、基礎波源モデルのすべり量を平均した値を用いている。

2007年中越沖地震の場合は Kの値に分割数依存性はなく、沿岸津波高さの規模はさほど 影響を受けなかったが、2003年十勝沖地震では分割数の数と Kの大きさが反比例し、分割 数が大きく詳細な波源ほど津波高が大きくなる。

また、*κ* については両ケースとも、分割数が小さく、粗い不均質分布ほど大きくなり、 局所的な分布を表せない傾向がある。

表 I.3-9 2007 年中越沖地震 各モデルの Κ 及び κ の値 (原子力基盤機構, 2010 より抜 粋)

	押し波		引き波	
	K	к	K	к
40分割波源モデル(基礎波源モデル)	1	1	1	1
24分割波源モデル	1.03	1.07	1.03	1.08
20分割波源モデル	0.94	1.14	0.95	1.17
16分割波源モデル	0.89	1.2	0.89	1.23
12分割波源モデル	0.98	1.13	0.99	1.16
8分割波源モデル	0.96	1.22	0.93	1.25
4分割波源モデル	1.02	1.24	1.01	1.26
2分割(長さ方向)波源モデル	1.16	1.26	1.14	1.3
2分割(幅方向)波源モデル	0.96	1.28	0.94	1.33
<u>一様波源モデル</u>	1.14	1.26	1.12	1.31

表 I.3-10 2003 年十勝沖地震 各モデルの K 及び K の値 (原子力基盤機構, 2010 より抜粋)

	К	к
48 分割(基礎)波源モデル	1	1
12 分割波源モデル	1.23	1.10
8 分割波源モデル	1.12	1.22
4 分割波源モデル	1.44	1.31
ー様波源モデル	1.48	1.24

図 I.3-8 基礎波源モデルによる沿岸高さに対する各モデルの沿岸高さの κの値の比較 (原子力基盤機構, 2010 より抜粋)

d)その他

インバージョン解析の断層モデルの要素単位を変化させて、推定した波源モデルを用いた計算波形と観測波形と比較した残差については、図I.3-9にみえるように12分割程度で飽和しているように見える。

図 I.3-9 波源(断層面を仮定)の分割数に対する計算波形と観測波形との残差二乗和の比 (原子力基盤機構, 2010 より抜粋)

(Ⅱ) 断層モデルの設定

(i) 津波波源断層の設定に関する検討

①使用するデータ

サブテーマ(2)(本プロジェクトと省略)で得られた断層データをもとに、別途国土交通 省、内閣府、文部科学省を事務局として進められた「日本海における大規模地震に関する 調査検討会(以下日本海調査検討会と省略)」の成果も参照して津波波源断層モデルを設定 する。本プロジェクトで得られた断層データと日本海調査検討会海底断層 WG の成果による 断層評価及びパラメータの特徴を表Ⅱ.i-1にまとめる。

表Ⅱ.i-1 本プロジェクト (サブテーマ(2)) 及び日本海調査検討会海底断層 WG による断 層情報

	本プロジェクトによる断層設定	日本海調査検討会海底断層WGによる断層設定
断層位置	範囲内の対象はおおむね網羅されている。 断層トレースの数は日本海調査検討会海底 断層WGよりも多い。	範囲内の対象はおおむね網羅する。ただし、 若狭沖や隠岐海嶺など沿岸から離れた断層 は含まない。
長さ・走向	断層端点のデータがあり、長さおよび走向は 推定できる。 端点は変位を確認できた測線で設定。	断層端点のデータがあり、長さおよび走向は 推定できる。
傾斜角	測線上で変位が確認された範囲についての みかけ傾斜角として提供されている。	傾斜角に関する情報はない。
すべり量	すべり量に関する情報はない。	すべり量に関する情報はない。
すべり角	すべり角に関する情報はない。	すべり角に関する情報はない。
地下構造	一部であるが、データあり。	一部であるが、データあり。
活構造かどうか	確認された断層の一部に構造に関するコメ ントあり。 海底面に変位が見られることを設定根拠の1 つとしている。	構造を示すデータあり。
既往津波波源との対応	既往の津波波源および歴史地震の震源と対 応する断層あり。	既往の津波波源および歴史地震の震源と対 応する断層あり。

②断層パラメータの整理

本プロジェクトで得られた断層データによる断層の位置を図Ⅱ.i-1に示す。日本海調 査検討会海底断層 WG における海底断層と、断層の位置や長さを比較できるように重ねて示 している。断層の本数は、本プロジェクトは多くなっているが、断層の長さは本プロジェ クトの方が短い傾向にある。

表Ⅱ-i-2には本プロジェクトのデータから抽出ないし推定できる断層のパラメータを示す。

a

図Ⅱ.i-1 本プロジェクト(サブテーマ(2))による断層位置と日本海調査検討会海底断層 WGの断層位置の比較 a)全体図 b)若狭~山陰

図Ⅱ.i-1 本プロジェクト(サブテーマ(2))による断層位置と日本海調査検討会海底断層 WG の断層位置の比較 c)山陰~山口県沖 d)山口県沖~北九州及び対馬

表Ⅱ-i-2のうち、断層の単点の座標、走向、長さ、変位のセンスは、本プロジェクト の断層データから抽出できる値を整理したものであるが、断層の傾斜方向、傾斜角及び断 層幅はデータから類推した。傾斜方向は、音波探査の各測線における見かけ傾斜から推測 できる、支配的な断層傾斜方向であり、傾斜角は、それぞれの断層が確認できた測線にお ける見かけ傾斜角を平均したものである。図Ⅱ.i-2にみかけ傾斜角と採用した断層の傾 斜角の概念を示した。ここでは、測線 a~eの見かけ傾斜角を平均したものをこの断層の傾 斜角とみなしている。

b

図Ⅱ.i-2 みかけ傾斜角と断層傾斜の概念図

a) 断層を上から見たスケマチックなイメージ b)1本の測線を断面でみたときのイメージ

Processing	オプロジェクトズキ	ни * * *						r	断層傾斜	角(deg.)		
Documentane192001SuborgLarent110110120NW40042.45.DSD, Kalper128401Suborg111171172178NSNS70.DSD, Kalper128303Suborg111100101NESUB11310.NE10.		пшели			断層上端 (m)	断層下端 (m)	走向	すべり角	傾斜方向	平均	断層長(km)	断層幅(km)
Nome194.060.40000.40000.400<	002_Tsushima_West	129.0615	33.80993	Lateral	110	11908	201		NW	60	27.1	13.6
D00. Monyee120.000300.000 </td <td>002_Tsushima_West2</td> <td>129.4616</td> <td>34.89136</td> <td>Lateral</td> <td>210</td> <td>6399</td> <td>229</td> <td></td> <td>NW</td> <td>62</td> <td>5.4</td> <td>7.0</td>	002_Tsushima_West2	129.4616	34.89136	Lateral	210	6399	229		NW	62	5.4	7.0
B000B	004_Kego	129.858	33.90277	Lateral	113	773	126		SW	75	30.6	0.7
Destymed19.08.0819.09.09.01NI <td>005_Nishiyama</td> <td>130.3919</td> <td>33.91735</td> <td>Lateral</td> <td>85</td> <td>210</td> <td>302</td> <td></td> <td>NE</td> <td>55</td> <td>8.4</td> <td>0.2</td>	005_Nishiyama	130.3919	33.91735	Lateral	85	210	302		NE	55	8.4	0.2
010. Homole171203070Jacter35.005Jacter35.005Jacter03.01N0207.305.00013. Okt Kainel133.012132.022Larent66.0997.0262.0S6.020.913.0014. Okt Kainel134.05330.81252Larent61.0910.05C.A.7.04.05313.0015. Okt Kainel135.05713.0527Larent11.013.0314.2S.NN.4.00.00.0015. FO-AFO-B135.05035.0527Larent11.013.0514.0N.N.4.00.0	006_Kanda	130.3686	34.66638	Lateral	115	1570	311		NE	79	44.8	1.5
Diz O. M. JackovDiz O. M. MarkJackov <thjackov< th="">Ja</thjackov<>	010_Hamada	132.239	35.0705	Lateral	117	304	248		N	20	37.3	0.5
Dis ONE ArealDis ONDis ON<	012_Oki_NW	132.5402	36.89612	Normal	524	9023	151		w	47	36.2	11.6
Dit out, Kainer, B194.103309.1328Jacter45210301052605.7.24.4551030Dit S, Ok, Kainer, C135.20135.202Lateral4113.03142S.W4.0 </td <td>013_Oki_Kairei_A</td> <td>133.797</td> <td>36.52129</td> <td>Lateral</td> <td>699</td> <td>9372</td> <td>92</td> <td></td> <td>S</td> <td>69</td> <td>29.9</td> <td>9.3</td>	013_Oki_Kairei_A	133.797	36.52129	Lateral	699	9372	92		S	69	29.9	9.3
Dis. Ox. Leng.Dis. BassesDis. Dis. Dis. Dis. Dis. Dis. Dis. Dis.	014_Oki_Kairei_B	134.1303	36.61263	Lateral	537	10558	269		S	72	45.5	10.5
DisployApportDispl	015_Oki_Kairei_C	134.3558	36.73814	Lateral	452	13035	269		S	76	30.6	13.0
D22.N.Konasi134.87330.904Moral45540.9325.0N42.062.022.N.Mata, Mort135.67236.540Normal107269.7510.5N42.064.022.E.M.Mata, Mort135.67236.540Normal41064062.2NW50.00.0RU.O135.07036.776Revers101060.01120.00.0RU.O135.07035.7400Revers101050.010.00.00.00.0RU.O135.07035.7400Revers101020.053.2NE2.216.016.0RU.O130.00036.7120Revers101020.03.3NE2.216.016.017.016.0RU.O130.00036.7124Revers102010.02.0NE2.28.010.016.017.016.016.0RU.O130.00036.7124Revers10.02.72.0NE4.010.016.0 </td <td>019_F0-A_F0-B</td> <td>135.5709</td> <td>35.65279</td> <td>Lateral</td> <td>115</td> <td>339</td> <td>142</td> <td></td> <td>SW</td> <td>42</td> <td>9.0</td> <td>0.3</td>	019_F0-A_F0-B	135.5709	35.65279	Lateral	115	339	142		SW	42	9.0	0.3
D22.Waises, DAM132.89137.9159.7N42.248.484.4222.EshTai.A135.692155.692155.6951079.4145445144NW661.0.20.0.4RC 01135.197157.074Revers148446144NW661.0.20.0.3RC 02135.290155.096Revers100303327NE2.70.0.3RC 03135.090155.097Revers100303327NE2.70.0.3RC 04130.00035.732.6Revers10103030.2NE2.70.0.3RC 05135.097157.953Revers1211133339NE5.71.3RC 04130.00135.732.6Revers1221231.0.4NE5.71.31.3RC 05135.073159.697Revers1221231.3NE5.71.31.3RC 04130.021337.724Lateral6.97.71.2NE7.71.61.3RC 04122.91333.9474Lateral6.97.71.2NE7.71.61.3RC 0413.02133.7274Lateral6.97.71.2NE7.71.61.3RC 04122.94533.94454Lateral6.97.71.2NE7.71.61.3RC 0413.10733.10745Lateral7.7<	024_N_Kinosaki	134.5841	36.10364	Normal	455	4936	236		N	46	42.9	6.2
D22. Markan Morth133.62239.80010.74110.74040.757.4NW5.006.020D22. Exhtrai.135.87235.87235.870148446114NW506.020RC0.1135.87035.0073Revers110570188W7.77.83.5RC0.2135.80935.0078Revers1203053.22NE2.23.20.4RC0.3135.00735.0713Revers1203.053.2NE2.23.20.4RC0.3135.0713135.0713135.977131.5Revers0.0610.42.44NW3.812.31.2RC0.3135.0713135.978135.978137.978137.978137.9781.71.21.21.33.9NE0.11.21.31.21.21.31.21.21.31.21.21.31.21.	025_Wakasa	134.8737	36.54344	Normal	1375	6973	55		N	42	84.7	8.4
B22 B23 B32 B32 MW 50 500 0.00 RC0.0 135.910 35.3061 Reverse 145 445 146 NW 60 112 0.02 RC0.0 135.900 S3.8006 Reverse 100 383 327 NE 27 16.3 0.63 RC0.0 135.9703 S7.9105 Reverse 103 305 NE 322 0.44 RC0.01 135.0703 S8.9716 Reverse 121 113 330 NE 500 16.64 13 RC0.01 135.073 S8.9477 Reverse 226 226 NW 400 182 36.0 RC0.01 130.013 S1.734 Reverse 226 231 NW 40 182 36.0 RC0.01 130.013 S1.734 Reverse 232 311 NE 71 17.0 30.0 37.0 37.0 37.0 37.0 37.0 3	026_Wakasa_North	135.6262	36.95806	Normal	749	4575	74		N	38	38.7	6.2
FK1.01 135 0073 35 0074 % Newree 146 445 194 NW 66 112 0.03 FK1.02 135 200 35 0068 Newree 100 303 322 NE 2.7 16.3 0.05 FK1.03 135 2001 35 30041 Newree 120 305 322 NE 2.7 16.3 0.04 FK1.04 135 001 35 7324 Newree 120 335 NE 50 16.6 13.3 FK1.01 135 7031 36.1734 Newree 206 2264 244 NW 46 46 3.3 FK1.11 135 303 35.8387 Newree 226 245 243 3.3 NE 40 16.5 3.3 FK0.01 13.0213 34.0478 Lateral 128 737 122 NW 42 45.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5	027_EchiTai_A	135.8726	36.2481	Reverse	189	480	222		NW	50	30.0	0.4
FK102 135 2004 358 3008 Powere 130 570 188 W 73 74 74 74 74 74 74 74 74 74 74	FKI_01	135.9197	35.70674	Reverse	145	445	194		NW	66	11.2	0.3
FRI 0.3 135.80041 350.8014 Powere 100 333 27 NE 27 16.3 0.63 FRI 0.5 135.8079 35.77324 Reverse 103 236 383 NE 50 32.3 0.4 FRI 0.6 135.0761 35.7732 Reverse 121 1133 336 NE 50 16.6 13.3 FRI 0.6 135.7671 35.8947 Reverse 122 13.3 336 NE 50 16.6 13.3 FRI 0.1 135.7671 35.8947 Reverse 122 228 0.20 NW 40 16.2 3.5 FRO 0.4 138.2013 33.9347 Letral 0.62 3.5 0.22 8.5 0.22 8.5 0.22 8.5 0.2 9.5 0.2 9.5 0.2 9.5 0.2 9.5 0.2 9.5 0.2 9.5 0.2 9.5 0.2 9.5 0.2 9.5 0.2 0.2	FKI_02	135.9206	35.83068	Reverse	130	570	188		w	73	7.9	0.5
FR1.06 135.797 35.7105 Reverse 120 352 NE 29 3.2 0.4 FR1.06 138.0101 35.7124 Reverse 103 336 NE 32 3.9 0.4 FR1.07 138.0101 35.9437 Reverse 121 1133 338 NE 52 13.9 FR1.01 135.9383 35.9487 Reverse 122 143 343 N 42 8.8 12.3 13.8 FR1.01 135.9388 25.9887 26.40 343 N 22 8.9 0.3 FR0.03 132.9584 Lateral 0.9 27.7 120 NE 62 0.5 0.2 FR0.04 130.173 Jassed Lateral 171 12.8 33.1 NE 63 12.7 16.4 0.6 FR0.07 130.173 Jassed Lateral 67 76 31.3 E 73.7 16.2 0.7 17.2	FKI_03	135.8049	35.80841	Reverse	109	383	327		NE	27	16.3	0.6
FR1.06 1360001 35.7724 Reverse 120 226 336 NE 32 3.9 0.4 FR0.07 1360100 35.7731 S.7724 Reverse 121 1133 333 NE 50 16.6 1.3 FR0.01 135.7031 S.17354 Reverse 206 256 226 NW 40 1.82 3.6 FR0.11 135.9303 S.93897 Reverse 125 2.77 20 NE 62 6.5 0.2 FK0.03 129.8519 33.98248 Lateral 108 7.73 11.5 SW 7.7 1.6.6 0.6 FK0.04 130.117 34.1016 Lateral 6.7 7.61 3.10 E 7.3 1.6.2 0.7 FK0.07 130.173 34.1045 Lateral 6.7 7.61 7.8 7.7 4.7 4.9 6.2 1.0 FK0.08 130.113 S4.1725 Lateral 6.7 <t< td=""><td>FKI_05</td><td>135.9797</td><td>35.76105</td><td>Reverse</td><td>120</td><td>305</td><td>352</td><td></td><td>NE</td><td>29</td><td>3.2</td><td>0.4</td></t<>	FKI_05	135.9797	35.76105	Reverse	120	305	352		NE	29	3.2	0.4
FRL 0.7 180.109 36.2135 Feverae 236 1133 339 NE 500 16.6 11.3 FRL 0.8 135 6701 355 69457 Reverae 266 226 NW 38 12.3 12.3 FRL 10 153 5031 S53895 Reverae 256 226 NW 40 12.3 3.0 FRL 11 153 5031 S53895 Reverae 125 249 343 NE 62 9.5 0.03 FRL 0.1 130 2013 35.9824 Lateral 128 7.77 125 SW 7.7 16.4 0.60 FRO 0.5 130 2084 Jateral 181 7.16 316 NE 8.3 2.7 0.7 FRO 0.6 130.173 JAtoris Lateral 8.7 7.64 303 NE 6.4 6.7 0.7 FRO 0.6 130.173 JAtoris Lateral 18.6 341 7.4 SE 6.4 6.7 <	FKI_06	136.0001	35.77324	Reverse	103	296	336		NE	32	3.9	0.4
FRL08 135.671 35.9457 Reverse 206 1044 246 NW 40 18.2 1.3 FRL10 135.703 35.9458 Reverse 226 226 NW 40 18.2 36.8 FRQ.11 135.838 37.9274 Laberal 125 246 34.3 NL 2 6.8 0.4 FRQ.04 129.581 33.98244 Laberal 67 512 313 NE 71 10.4 0.6 FRQ.04 129.581 34.0182 Laberal 128 77 124 SW 71 1.72 0.7 FRQ.04 130.173 34.0142 Laberal 67 761 313 E 73 14.2 0.7 FRQ.04 130.173 34.1045 Laberal 67 613 225 + 49 6.2 1.0 FRQ.04 130.173 34.1045 Laberal 614 134 54.2 55 55	FKI_07	136.0109	36.21315	Reverse	121	1133	339		NE	50	16.6	1.3
FRI 10 135,7031 36.17364 Peverse 226 226 NW 40 122 3.6 FK1 11 135,9389 35,9387 Peverse 128 240 343 N 422 8.9 0.3 FK0,01 130,2013 339274 Lateral 09 277 320 NE 62 0.4 FK0,04 129,8313 339945 Lateral 108 737 125 SW 77 16.4 0.6 FK0,05 130,171 34,0145 Lateral 81 716 313 E 71 72 0.7 FK0,06 130,171 34,1145 Lateral 87 781 313 E 73 42 0.7 FK0,09 130,1917 34,1145 Lateral 813 325 * 49 62 10.0 FK0,09 130,102 35,1034 Lateral 116 116.4 154 55 55 55 55 55 </td <td>FKI_08</td> <td>135.6761</td> <td>35.99457</td> <td>Reverse</td> <td>306</td> <td>1044</td> <td>249</td> <td></td> <td>NW</td> <td>38</td> <td>12.3</td> <td>1.2</td>	FKI_08	135.6761	35.99457	Reverse	306	1044	249		NW	38	12.3	1.2
FR(11 135,9389 35,9389 Peverse 125 248 343 N 22 8.9 0.3 FK0_01 130,2013 33,79274 Lateral 87 512 313 NE 62 9.5 0.2 FK0_04 129,8013 33,99246 Lateral 87 712 512 313 NE 62 9.5 0.2 FK0_05 130,2063 33,99245 Lateral 108 323 311 NE 58 16.5 0.3 FK0_06 130,173 34,01743 Lateral 87 764 304 NE 71 2.0 7.7 FK0_07 130,1913 34,1165 Lateral 877 781 313 E 7.3 14.2 0.7 FK0_09 130,191 314,145 Lateral 118 1614 147 847 243 NW 64 32.3 1.1 FK0_09 13,5024 54,704 Lateral 164	FKI_10	135.7031	36.17354	Reverse	296	2588	226		NW	40	18.2	3.6
FKO_01 130.2013 33.7927 Lateral 90 277 320 NE 62 9.5 0.2 FKO_03 129.9519 33.96426 Lateral 128 33.9445 Lateral 128 33.94745 Lateral 128 33.94745 Lateral 87 741 304 NE 58 10.5 0.3 FKO_06 130.113 34.1055 Lateral 87 741 313 E 73 14.2 0.7 0.6 FKO_07 135.012 35.0355 Lateral 118 1614 154 58 30 53 1.7 SHM 01 131.202 35.0355 Lateral 1163 6031 223 NW 64 32.3 1.7 SHM 02 131.502 35.0355 Lateral 1163	FKI_11	135.9389	35.93897	Reverse	125	249	343		N	22	8.9	0.3
FKO.03 129.519 33.92445 Lateral 87 512 313 NE 71 10.8 0.4 FKO.04 129.8343 33.9445 Lateral 108 737 16.4 0.6 FKO.05 130.265 34.0193 Lateral 108 323 311 NE 58 16.5 0.3 FKO.06 130.171 34.1016 Lateral 81 716 316 NE 71 7.2 0.7 FKO.06 130.1371 34.1016 Lateral 87 781 313 E 73 14.2 0.7 FKO.09 130.1917 34.1426 Lateral 118 761 47 SE 64 8.7 0.6 KYO.02 135.0124 35.72394 Lateral 118 716 231 NW 64 223 55 SHM.02 131.8074 35.4424 Lateral 118 731 226 N 85 84.22 55	FK0_01	130.2013	33.79274	Lateral	90	277	320		NE	62	9.5	0.2
FKO.04 129.8343 33.99445 Lateral 128 7.77 16.4 0.6 FKO.05 130.2685 34.01983 Lateral 108 322 311 NE 5.8 16.5 0.3 FKO.06 130.1734 34.01983 Lateral 87 704 304 NE 7.3 14.2 0.7 FKO.06 130.139 34.10965 Lateral 87 781 313 E 7.3 14.2 0.7 FKO.08 130.139 34.11465 Lateral 87 781 313 2.5 # 49 6.2 1.0 FKO.09 135.0174 35.7324 Lateral 116 1614 154 SW 64 8.7 0.2 SHM.01 131.502 35.4004 Lateral 116 3631 2.3 NW 76 24.5 5.9 SHM.02 131.5024 35.40292 Lateral 116 371 22.4 NW 78 43	FKO_03	129.9519	33.96248	Lateral	87	512	313		NE	71	10.8	0.4
FK0.05 130.2665 34.0193 Lateral 108 232 311 NE 58 165 0.3 FK0.06 130.171 34.1016 Lateral 81 716 316 NE 71 7.2 0.7 FK0.07 130.1734 34.1005 Lateral 87 704 304 NE 83 2.7 0.6 FK0.08 130.1397 34.1165 Lateral 87 781 313 2.5 * 49 6.2 10. FK0.09 135.024 35.90931 Narmal 194 776 47 SE 6.4 8.7 0.6 KY0.01 131.807 35.93951 Lateral 118 1614 154 SW 6.4 37.5 1.7 SHM.02 131.602 35.4327 Lateral 118 6031 233 NW 64 22.3 6.5 59 SHM.04 131.467 35.4326 Lateral 1194 1248 39 S 71 23.1 1.1 SHM.05 131.6973 <t< td=""><td>FKO_04</td><td>129.8343</td><td>33.99445</td><td>Lateral</td><td>128</td><td>737</td><td>125</td><td></td><td>SW</td><td>77</td><td>16.4</td><td>0.6</td></t<>	FKO_04	129.8343	33.99445	Lateral	128	737	125		SW	77	16.4	0.6
FKO.06 130.171 34.1016 Lateral 81 716 316 NE 71 7.2 0.7 FKO.07 130.1734 34.07438 Lateral 87 704 304 NE 83 2.7 0.67 FKO.08 130.1374 34.07438 Lateral 87 781 313 E 73 14.2 0.7 FKO.09 130.1917 34.11465 Lateral 87 813 325 * 49 6.2 1.0 FKO.02 135.0124 35.72394 Lateral 183 6031 233 NW 64 32.5 5.5 SHM.01 131.80 35.43104 Lateral 184 347 243 NW 78 13.7 0.2 SHM.04 131.487 35.45444 Lateral 184 347 248 50 5 76 36.6 2.3 SHM.04 131.6973 35.46463 Lateral 194 1246 93	FKO_05	130.2685	34.01983	Lateral	108	323	311		NE	58	16.5	0.3
FKO.07 130.1734 244.738 Lateral 87 704 304 NE 83 2.7 0.6 FKO.08 130.1359 34.15085 Lateral 87 781 313 E 73 14.2 0.7 FKO.09 130.1359 34.11665 Lateral 87 813 325 * 49 6.2 1.0 KYO.02 135.0124 35.73985 Lateral 118 1614 154 SW 64 37.5 1.7 SHM.01 131.2807 35.0385 Lateral 168 5669 59 SE 76 24.5 59 SHM.02 131.6024 35.53984 Lateral 176 2.37 2.62 N 85 38.4 2.22 SHM.03 131.687 35.3594 Lateral 192 381 260 N 64 28.4 10.2 SHM.04 131.6973 35.41631 Lateral 192 381 260 N	FKO_06	130.171	34.1016	Lateral	81	716	316		NE	71	7.2	0.7
FKO.08 130.1350 34.11685 Lateral 87 781 313 E 73 14.2 0.7 FKO.09 130.1917 34.11465 Lateral 87 813 325 * 49 6.2 1.0 KYO_01 135.0024 35.09031 Normal 1194 776 47 SE 6.4 8.7 0.6 KYO_02 135.0124 35.72394 Lateral 118 1614 154 SW 6.4 37.5 1.7 SHM_01 131.5024 35.43297 Lateral 1168 5660 SE 7.6 2.45 5.5 SHM_02 131.487 35.45444 Lateral 176 2.371 2.62 N 8.5 3.8.4 2.2 SHM_05 131.6974 35.5954 Lateral 192 3.81 2.60 N 6.4 2.2.4 8.7 SHM_06 131.6974 35.5474 Lateral 198 2436 9.2 S 7.6 3.6.6 2.3.3 SHM_01 131.9973 35.47254 Later	FK0_07	130.1734	34.07438	Lateral	87	704	304		NE	83	2.7	0.6
FKO.09 130.1917 34.1145 Lateral 817 813 325 ** 49 6.2 1.0 KYO.01 135.3024 35.0930 Normal 194 776 47 SE 64 8.7 0.6 KYO.02 135.0124 35.72394 Lateral 118 1614 154 SW 64 32.3 6.5 SHM.02 131.5024 35.41004 Lateral 184 347 243 NW 64 32.3 6.5 SHM.03 131.48 35.4524 Lateral 176 2371 262 N 85 38.4 22 SHM.04 131.487 35.5954 Lateral 194 1244 93 S 71 23.1 1.1 SHM.05 131.6974 35.5954 Lateral 192 381 260 N 64 28.4 0.2 SHM.06 131.6973 35.4928 Lateral 192 381 260 N 64 28.4 1.0 SHM.06 131.9974 35.4928 Lateral <td>FKO_08</td> <td>130.1359</td> <td>34.15085</td> <td>Lateral</td> <td>87</td> <td>781</td> <td>313</td> <td></td> <td>E</td> <td>73</td> <td>14.2</td> <td>0.7</td>	FKO_08	130.1359	34.15085	Lateral	87	781	313		E	73	14.2	0.7
KYO_01 133.0024 35.90931 Normal 194 776 47 SE 64 8.7 0.6 KYO_02 135.0124 35.72394 Lateral 118 1614 154 SW 64 37.5 1.7 SHM_02 131.5024 35.43297 Lateral 168 5869 59 SE 76 24.5 5.9 SHM_03 131.482 35.43297 Lateral 176 2.371 2.62 N 85 3.8.4 2.2 SHM_06 131.6424 35.8385 Lateral 1192 381 2.60 N 64 2.8.4 0.2 SHM_06 131.6974 35.3954 Lateral 1192 381 2.60 N 64 2.8.4 0.2 SHM_07 132.0011 35.70282 Lateral 1192 2.71 N 78 41.8 0.9 SHM_08 131.6974 35.54293 Lateral 1190 1668 2.73 N	FKO_09	130.1917	34.11465	Lateral	87	813	325		*	49	6.2	1.0
KYO 02 135 0124 55 72394 Lateral 118 1614 154 SW 64 37.5 1.7 SHM 01 131.2897 35.03855 Lateral 163 6031 233 NW 64 32.3 6.5 SHM 02 131.5024 35.430297 Lateral 168 586 59 SE 76 24.5 5.9 SHM 04 131.467 35.4544 Lateral 176 2371 262 N 85 38.4 2.2 SHM 05 131.647 35.558385 Lateral 192 381 260 N 64 28.4 0.2 SHM 07 132.0071 35.558385 Lateral 192 381 260 N 64 28.4 0.2 SHM 07 132.0071 35.5483 Lateral 198 2436 92 S 76 36.6 2.3 SHM 03 131.9974 35.52493 Lateral 190 1688 273 <td< td=""><td>KYO_01</td><td>135.3024</td><td>35.90931</td><td>Normal</td><td>194</td><td>776</td><td>47</td><td></td><td>SE</td><td>64</td><td>8.7</td><td>0.6</td></td<>	KYO_01	135.3024	35.90931	Normal	194	776	47		SE	64	8.7	0.6
SHM_01 131 2897 35 33855 Lateral 163 6031 233 NW 64 23.3 6.5 SHM_02 131.5024 35.41004 Lateral 184 347 243 NW 78 13.7 0.2 SHM_03 131.36 35.4527 Lateral 168 5656 59 SE 76 24.5 5.5 SHM_04 131.647 35.4544 Lateral 176 2371 262 N 85 36.4 22.2 SHM_05 131.647 35.53954 Lateral 192 381 260 N 64 28.4 0.2 SHM_06 131.6973 35.64163 Lateral 198 2436 92 S 76 36.6 23 SHM_09 131.9973 35.64163 Lateral 198 119 277 N 78 41.8 0.9 SHM_10 131.9973 35.64163 Lateral 190 16.88 273 N 6	KYO_02	135.0124	35.72394	Lateral	118	1614	154		SW	64	37.5	1.7
NHU2 131.5024 33.4104 Lateral 184 347 243 NW 78 13.7 0.2 SHM.03 131.36 54.3297 Lateral 168 586 59 SE 76 24.5 5.9 SHM.04 131.467 35.45444 Lateral 176 2271 262 N 85 38.4 2.2 SHM.05 131.6974 35.53954 Lateral 192 381 260 N 64 28.4 0.2 SHM.06 131.6974 35.53954 Lateral 192 381 260 N 64 28.4 0.2 SHM.07 132.0011 35.7022 Lateral 198 2436 92 S 76 36.6 2.3 SHM.08 131.9973 35.4728 Lateral 190 1688 273 N 82 2.45 1.5 SHM.10 131.9973 35.4728 Lateral 135 7340 263 N	SHM_01	131.2897	35.03855	Lateral	163	6031	233		NW	64	32.3	6.5
SHM.03 131.30 33.42.97 Lateral 166 3699 39 SE 76 24.3 33.9 SHM.04 131.487 35.45244 Lateral 176 2371 262 N 85 38.4 222 SHM.05 131.6474 35.53954 Lateral 194 124 93 S 71 23.1 1.1 SHM.05 131.6974 35.5954 Lateral 192 381 260 N 64 26.4 0.2 SHM.05 131.6973 35.64163 Lateral 198 2436 92 S 76 36.6 2.3 SHM.09 131.9974 35.5493 Lateral 190 1688 2.73 N 60 37.2 8.3 SHM.10 131.9973 35.4726 Lateral 1135 7340 263 N 60 37.2 8.3 SHM.14 131.8947 35.1696 Lateral 1176 984 170 SW </td <td>SHM_02</td> <td>131.5024</td> <td>35.41004</td> <td>Lateral</td> <td>184</td> <td>347</td> <td>243</td> <td></td> <td>NW</td> <td>78</td> <td>13./</td> <td>0.2</td>	SHM_02	131.5024	35.41004	Lateral	184	347	243		NW	78	13./	0.2
NH, 04 131,427 334,944 Lateral 178 2.371 2.22 N 835 3.8.4 2.2 SHM, 05 131,6424 35,58385 Lateral 194 1248 93 S 71 23.1 1.1 SHM, 06 131,6974 35,58385 Lateral 192 381 260 N 64 28.4 0.2 SHM, 06 131,6973 35,64163 Lateral 198 2436 92 S 76 36.6 2.3 SHM, 09 131,9974 35,52493 Lateral 194 1119 277 N 78 41.8 0.9 SHM, 10 131,9973 35,47285 Lateral 190 1688 273 N 82 24.5 1.5 SHM, 11 132,0976 35,5334 Lateral 173 364 259 N 62 192 0.2 SHM, 13 131,844 35,14731 Lateral 176 984 170		101.00	35.43297	Lateral	108	0071	59		SE	70	24.5	5.9
SHM_00 131.0424 33.0424 33.0424 33.0424 1246 33 3 71 23.1 1.1 SHM_06 131.6974 35.3954 Lateral 192 381 260 N 64 28.4 0.2 SHM_07 132.0911 35.70828 Lateral 198 2436 92 S 76 36.6 2.3 SHM_09 131.9974 35.52493 Lateral 198 2436 92 S 76 36.6 2.3 SHM_09 131.9973 35.47285 Lateral 190 1688 2.73 N 82 24.5 1.5 SHM_10 131.9973 35.4728 Lateral 135 7340 263 N 60 37.2 8.3 SHM_11 132.92972 35.2605 Lateral 173 364 259 NE 62 19.2 0.2 SHM_13 131.8847 35.1673 Lateral 175 358 66 1	SHM_04	131.487	35.45444	Lateral	104	1249	202		N S	80	38.4	2.2
SHM.00 131.03/4 33.03/94 Lateral 132 331 200 N 64 2.84 0.2 SHM.07 132.0011 35.7082k Lateral 251 8599 272 N 73 22.4 8.7 SHM.08 131.9973 35.64163 Lateral 198 2436 92 S 76 6.6 2.3 SHM.09 131.9973 35.47285 Lateral 194 1119 277 N 78 41.8 0.9 SHM.10 131.9973 35.47285 Lateral 190 1688 273 N 82 24.5 1.5 SHM.11 132.0976 35.3374 Lateral 173 364 259 NE 62 19.2 0.2 SHM.13 131.8548 35.14731 Lateral 176 984 170 SW 84 14.7 0.8 SHM.14 131.8847 35.1695 Lateral 113 8995 250 N	SHM_05	131.0424	30.08380	Lateral	194	1248	93		S N	64	23.1	1.1
SHM_07 132.001 33.7022 124 212 N 73 22.4 8.7 SHM_08 131.6973 35.64163 Lateral 198 2436 92 S 76 36.6 2.3 SHM_09 131.9973 35.72285 Lateral 194 1119 277 N 78 41.8 0.9 SHM_10 131.9973 35.72285 Lateral 199 1688 273 N 82 24.5 1.5 SHM_11 132.0976 35.35374 Lateral 173 364 259 NE 62 19.2 0.2 SHM_12 132.2972 35.6605 Lateral 176 984 170 SW 84 14.7 0.8 SHM_14 131.8847 35.1695 Lateral 114 8995 250 N 59 39.9 10.4 SHM_15 132.8274 35.6242 Lateral 113 8995 256 N 66 17.1	SHM_00	122 0011	25 70000	Lateral	192	9500	200		IN N	72	20.4	0.2
SHM_00 131.9373 35.04763 Lateral 194 1119 277 N 78 41.8 0.9 SHM_09 131.9974 35.52493 Lateral 194 1119 277 N 78 41.8 0.9 SHM_00 131.9974 35.52493 Lateral 190 1688 273 N 82 24.5 1.5 SHM_11 132.0976 35.35374 Lateral 173 364 259 NE 62 19.2 0.2 SHM_12 132.2972 35.6605 Lateral 173 364 259 NE 62 19.2 0.2 SHM_14 131.8548 35.14731 Lateral 176 984 170 SW 84 14.7 0.8 SHM_15 132.5524 35.683 Lateral 113 8995 250 N 67 4.1 3.7 SHM_20 132.8747 35.6824 Lateral 150 3518 236 N		131.6073	35.64163	Lateral	109	2436	272		8	76	22.4	2.2
NH, 10 131.9374 35.24735 Lateral 190 1688 273 N 82 24.5 1.5 SHM, 10 131.9974 35.47285 Lateral 190 1688 273 N 82 24.5 1.5 SHM, 11 132.0976 35.35374 Lateral 135 7340 263 N 60 37.2 8.3 SHM, 12 132.2972 35.26605 Lateral 173 364 259 NE 62 19.2 0.2 SHM, 14 131.8548 35.14731 Lateral 176 984 170 SW 84 14.7 0.8 SHM, 14 131.8847 35.1696 Lateral 145 1235 165 SW 79 14.8 1.1 SHM, 16 132.8724 35.6242 Lateral 113 8995 256 N 66 17.1 1.6 SHM, 20 132.5479 35.94652 Lateral 281 778 269		131.0074	35 52403	Lateral	190	1110	32		N	70	41.9	2.5
N.M. 10 101.007 103.007 003.037.02 1.00 <th1.00< th=""> <th1.00< th=""> 1.00<td>SHM 10</td><td>131 9973</td><td>35 47285</td><td>Lateral</td><td>194</td><td>1688</td><td>273</td><td></td><td>N</td><td>82</td><td>24.5</td><td>1.5</td></th1.00<></th1.00<>	SHM 10	131 9973	35 47285	Lateral	194	1688	273		N	82	24.5	1.5
Harrier Harrier <t< td=""><td>SHM 11</td><td>132,0976</td><td>35,35374</td><td>Lateral</td><td>135</td><td>7340</td><td>263</td><td></td><td>N</td><td>60</td><td>37.2</td><td>8.3</td></t<>	SHM 11	132,0976	35,35374	Lateral	135	7340	263		N	60	37.2	8.3
SHM 13 131.8548 35.14731 Lateral 176 984 170 SW 84 14.7 0.8 SHM 13 131.8548 35.14731 Lateral 145 1235 165 SW 84 14.7 0.8 SHM 14 131.8548 35.14731 Lateral 145 1235 165 SW 79 14.8 1.1 SHM 15 132.5524 35.6823 Lateral 113 8995 250 N 59 39.9 10.4 SHM 16 132.8724 35.6224 Lateral 150 3518 236 N 67 4.1 3.7 SHM 20 132.5479 35.94652 Lateral 221 1639 73 S 66 17.1 1.6 TOT_01 134.4475 35.75667 Lateral 281 7780 269 N 60 29.0 8.7 YGU_01 130.5382 34.45776 Lateral 113 873 30.4 <	SHM_12	132.2972	35.26605	Lateral	173	364	259		NE	62	19.2	0.2
SHM_14 131.8847 35.1666 Lateral 145 123 166 SW 79 14.8 1.11 SHM_15 132.5524 35.6833 Lateral 113 8995 250 N 59 39.9 10.4 SHM_16 132.8724 35.62242 Lateral 150 3518 236 N 67 4.1 3.7 SHM_20 132.5479 35.94652 Lateral 221 1639 73 S 66 17.1 1.6 TOT_01 134.4475 35.75667 Lateral 281 7780 269 N 60 29.0 8.7 TOT_02 133.6074 35.62712 Lateral 113 873 304 * 83 30.2 0.8 YGU_01 130.5362 34.45776 Lateral 1162 1053 139 W 79 33.0 0.9 YGU_02 130.4302 34.69862 Lateral 1162 1053 139 <	SHM 13	131.8548	35.14731	Lateral	176	984	170		SW	84	14.7	0.8
SHM_15 132.5524 35.6833 Lateral 113 8995 250 N 59 39.9 10.4 SHM_16 132.8724 35.6823 Lateral 150 3518 236 N 67 4.1 3.7 SHM_20 132.5479 35.94652 Lateral 221 1639 73 S 66 17.1 1.6 TOT_01 134.4475 35.7567 Lateral 281 7780 269 N 60 29.0 8.7 TOT_02 133.6074 35.62712 Lateral 137 9153 258 N 56 54.7 10.9 YGU_01 130.5382 34.45776 Lateral 113 873 304 * 83 30.2 0.8 YGU_02 130.4302 34.69825 Lateral 162 1053 139 W 79 33.0 0.9 YGU_03 130.5362 34.70604 Lateral 162 1053 139	SHM 14	131.8847	35,1696	Lateral	145	1235	165		SW	79	14.8	1.1
SHM_16 132.8724 35.62242 Lateral 150 3518 236 N 67 4.1 3.7 SHM_20 132.5479 35.94652 Lateral 221 1639 73 S 66 17.1 1.6 TOT_01 134.4475 35.75667 Lateral 281 7780 269 N 60 29.0 8.7 TOT_02 133.6074 35.62712 Lateral 137 9153 258 N 56 54.7 10.9 YGU_01 130.5382 34.45776 Lateral 113 873 304 * 83 30.2 0.8 YGU_02 130.4302 34.69825 Lateral 108 1022 145 W 75 37.9 0.9 YGU_03 130.5362 34.70604 Lateral 104 192 141 W 80 17.1 1.1 YGU_04 130.4306 34.60366 Lateral 174 192 141	SHM_15	132.5524	35.6833	Lateral	113	8995	250		N	59	39.9	10.4
SHM_20 132.5479 35.94652 Lateral 221 1639 73 S 66 17.1 1.6 TOT_01 134.4475 35.75667 Lateral 281 7780 269 N 60 29.0 8.7 TOT_02 133.6074 35.62712 Lateral 137 9153 258 N 56 54.7 10.9 YGU_01 130.5382 34.45776 Lateral 113 873 30.4 * 83 30.2 0.8 YGU_02 130.4302 34.69825 Lateral 162 1053 139 W 79 33.0 0.9 YGU_03 130.5362 34.70604 Lateral 108 1022 145 W 75 37.9 0.9 YGU_04 130.4303 34.6036 Lateral 1174 1192 141 W 80 17.1 1.1 YGU_05 130.3378 34.60376 Lateral 174 926 313 <	SHM_16	132.8724	35.62242	Lateral	150	3518	236		N	67	4.1	3.7
TOT_01 134.4475 35.75667 Lateral 281 7780 269 N 60 29.0 8.7 TOT_02 133.8074 35.62712 Lateral 137 9153 258 N 56 54.7 10.9 YGU_01 130.5382 34.45776 Lateral 113 873 304 * 83 30.2 0.8 YGU_02 130.4302 34.69825 Lateral 162 1053 139 W 79 33.0 0.9 YGU_03 130.5362 34.70604 Lateral 108 1022 145 W 75 37.9 0.9 YGU_04 130.4036 34.60366 Lateral 147 1192 141 W 80 17.1 1.1 YGU_05 130.3378 34.60376 Lateral 174 926 313 NE 82 20.7 0.8 YGU_06 130.7543 34.67282 Lateral 199 714 331 <	SHM_20	132.5479	35.94652	Lateral	221	1639	73		s	66	17.1	1.6
TOT.02 133.6074 35.62712 Lateral 137 9153 258 N 56 54.7 10.9 YGU_01 130.5382 34.45776 Lateral 113 873 304 * 83 30.2 0.8 YGU_02 130.4302 34.69825 Lateral 162 1053 139 W 79 33.0 0.9 YGU_03 130.5362 34.70604 Lateral 108 1022 145 W 75 37.9 0.9 YGU_04 130.4036 34.60366 Lateral 147 1192 141 W 80 17.1 1.1 YGU_05 130.378 34.60376 Lateral 174 926 313 NE 82 20.7 0.8 YGU_05 130.378 34.67282 Lateral 174 926 313 NE 74 21.6 0.6 YGU_07 131.2291 34.85904 Lateral 99 714 331	TOT_01	134.4475	35.75667	Lateral	281	7780	269		N	60	29.0	8.7
YGU_01 130.5382 34.45776 Lateral 113 873 304 * 83 30.2 0.8 YGU_02 130.4302 34.69825 Lateral 162 1053 139 W 79 33.0 0.9 YGU_03 130.5362 34.70604 Lateral 108 1022 145 W 75 37.9 0.9 YGU_04 130.4036 34.60966 Lateral 114 W 800 17.1 1.1.1 YGU_05 130.378 34.60376 Lateral 174 926 313 NE 82 20.7 0.8 YGU_06 130.7543 34.67282 Lateral 190 676 338 NE 74 21.6 0.6 YGU_09 130.7543 34.67282 Lateral 193 1200 331 NE 72 30.9 0.6 YGU_09 130.7515 35.1934 Lateral 193 1200 242 NW 73 <t< td=""><td>TOT_02</td><td>133.6074</td><td>35.62712</td><td>Lateral</td><td>137</td><td>9153</td><td>258</td><td></td><td>N</td><td>56</td><td>54.7</td><td>10.9</td></t<>	TOT_02	133.6074	35.62712	Lateral	137	9153	258		N	56	54.7	10.9
YGU_02 130.4302 34.69825 Lateral 162 1053 139 W 79 33.0 0.9 YGU_03 130.5362 34.70604 Lateral 108 1022 145 W 75 37.9 0.9 YGU_04 130.4036 34.60966 Lateral 1147 1192 141 W 800 17.1 1.1 YGU_05 130.378 34.60316 Lateral 174 926 313 NE 82 20.7 0.8 YGU_06 130.7543 34.67282 Lateral 130 678 338 NE 74 21.6 0.6 YGU_07 131.2291 34.85904 Lateral 193 714 331 NE 72 30.9 0.6 YGU_09 130.7515 35.19934 Lateral 193 1200 242 NW 73 28.8 1.1 YGU_10 130.006 34.9811 Lateral 76 963 339 <t< td=""><td>YGU_01</td><td>130.5382</td><td>34.45776</td><td>Lateral</td><td>113</td><td>873</td><td>304</td><td></td><td>*</td><td>83</td><td>30.2</td><td>0.8</td></t<>	YGU_01	130.5382	34.45776	Lateral	113	873	304		*	83	30.2	0.8
YGU 03 130.5362 34.70604 Lateral 108 1022 145 W 75 37.9 0.9 YGU 04 130.4036 34.60966 Lateral 147 1192 141 W 80 17.1 1.1 YGU 05 130.3378 34.60366 Lateral 174 926 313 NE 82 20.7 0.8 YGU 06 130.7543 34.67282 Lateral 130 678 338 NE 74 21.6 0.6 YGU 07 131.2291 34.85904 Lateral 99 714 331 NE 72 30.9 0.6 YGU 09 130.7515 35.19834 Lateral 193 1200 242 NW 73 28.8 1.1 YGU 10 131.0006 34.99811 Lateral 76 963 339 NE 80 34.6 0.9 YGU 13 130.1429 34.79601 Lateral 113 2449 302 <	YGU_02	130.4302	34.69825	Lateral	162	1053	139		w	79	33.0	0.9
YGU_04 130.4036 34.60966 Lateral 147 1192 141 W 80 17.1 1.1. YGU_05 130.3378 34.60316 Lateral 174 926 313 NE 82 20.7 0.8 YGU_06 130.7543 34.67282 Lateral 130 678 338 NE 74 21.6 0.6 YGU_07 131.2291 34.85904 Lateral 99 714 331 NE 72 30.9 0.6 YGU_09 130.7515 35.19934 Lateral 193 1200 242 NW 73 28.8 1.1 YGU_10 131.0006 34.99811 Lateral 76 963 339 NE 80 34.6 0.9 YGU_13 130.1429 34.79601 Lateral 113 2449 302 NE 72 15.9 2.5	YGU_03	130.5362	34.70604	Lateral	108	1022	145		w	75	37.9	0.9
YGU 05 130.3378 34.60316 Lateral 174 926 313 NE 82 20.7 0.8 YGU 06 130.7543 34.67282 Lateral 130 678 338 NE 74 21.6 0.6 YGU 07 131.2291 34.85904 Lateral 99 714 331 NE 72 30.9 0.6 YGU 09 130.7515 35.19934 Lateral 193 1200 242 NW 73 28.8 1.1 YGU 10 131.0006 34.99811 Lateral 76 963 339 NE 80 34.6 0.9 YGU 13 130.1429 34.79601 Lateral 113 2449 302 NE 72 15.9 2.5	YGU_04	130.4036	34.60966	Lateral	147	1192	141		w	80	17.1	1.1
YGU_06 130.7543 34.67282 Lateral 130 678 338 NE 74 21.6 0.6 YGU_07 131.2291 34.85904 Lateral 99 714 331 NE 72 30.9 0.6 YGU_09 130.7515 35.19934 Lateral 193 1200 242 NW 73 28.8 1.11 YGU_10 131.0006 34.99811 Lateral 76 963 339 NE 80 34.6 0.9 YGU_13 130.1429 34.79601 Lateral 113 2449 302 NE 72 15.9 2.5	YGU_05	130.3378	34.60316	Lateral	174	926	313		NE	82	20.7	0.8
YGU_07 131.2291 34.85904 Lateral 99 714 331 NE 72 30.9 0.6 YGU_09 130.7515 35.19934 Lateral 193 1200 242 NW 73 28.8 1.11 YGU_10 131.0006 34.99811 Lateral 76 963 339 NE 80 34.6 0.9 YGU_13 130.1429 34.79601 Lateral 113 2449 302 NE 72 15.9 2.5	YGU_06	130.7543	34.67282	Lateral	130	678	338		NE	74	21.6	0.6
YGU_09 130.7515 35.19934 Lateral 193 1200 242 NW 73 28.8 1.11 YGU_10 131.0006 34.99811 Lateral 76 963 339 NE 80 34.6 0.9 YGU_13 130.1429 34.79601 Lateral 113 2449 302 NE 72 15.9 2.5	YGU_07	131.2291	34.85904	Lateral	99	714	331		NE	72	30.9	0.6
YGU_10 131.0006 34.99811 Lateral 76 963 339 NE 80 34.6 0.9 YGU_13 130.1429 34.79601 Lateral 113 2449 302 NE 72 15.9 2.5	YGU_09	130.7515	35.19934	Lateral	193	1200	242		NW	73	28.8	1.1
YGU_13 130.1429 34.79601 Lateral 113 2449 302 NE 72 15.9 2.5	YGU_10	131.0006	34.99811	Lateral	76	963	339		NE	80	34.6	0.9
	YGU_13	130.1429	34.79601	Lateral	113	2449	302		NE	72	15.9	2.5

表Ⅱ.i-2 本プロジェクト (サブテーマ (2)) によるデータから抽出した断層パラメータ

※この表における断層の上端、下端は、音波探査測線断面で確認できた深度であり、後述するモデル化で採用する値とは異なる。

(ii) 断層モデルの設定

断層モデル群の設定方法

(i)で整理した断層データを用いて津波波源となる断層モデルを設定した。本プロジェクト(サブテーマ(2))及び日本海調査検討会で作成した波源断層モデルの特徴を表 II.ii-1に示す。

表Ⅱ.ii-1 本プロジェクト(サブテーマ(2))及び日本海調査検討会 による波源断層モデ ルの特徴

	本プロジェクトの波源断層	日本海調査検討会の波源断層
断層位置	範囲内の対象をなるべく網羅するように設定。断層群をひとつの断層モデルで代表させることで、近接する断層は、代表的な断層の 位置のばらつきとする。	範囲内の全断層は網羅していない。最大クラ スの津波波源のみを対象とする。
長さ・走向	断層のグルーピングにより連動性を考慮。 短い断層は18kmと設定。	断層の連動、陸側への延長等により断層長 は長く設定。
傾斜角	本プロジェクトのデータを参考に、一定の値と して設定。	断層の性格をふまえて一定の値として設定。 横ずれ断層=90°、縦ずれ断層=45°± 15°
すべり量	日本海調査検討モデルと同じスケーリング式 で設定。 平均的な値を用い、不確実性を考慮する。	独自のスケーリング式により設定。 最大クラス相当の値を採用。
すべり角	日本海調査検討会のデータを参照して設 定。	広域応力場のデータから設定。
地下構造	*	*
活構造かどうか	*	*
既往津波波源との対応	既往の津波波源、歴史地震と対応するよう に意識して設定。	対応しているものもある。

本プロジェクトにおける断層モデル群は2つである。ひとつは、「解釈された断層モデル」 であり、今回の検討において「基本断層モデル」として示す断層モデル群である。また、 基本断層モデルの分割によって、津波を発生し得るより小さい規模の断層モデルを検討し、 基本断層モデルの連動によって、より大きな規模の断層モデルについても検討した(図 Ⅱ.i-1)。

🗷 II.i-1	日本海領域の断層モ	デルの概念
----------	-----------	-------

(1)解釈された断層モデル: 基本間 ・震源として評価された断層で発 ・セグメントはひとつないし複数 ・既往地震(津波)の再現モデル	所層モ 注す を含す	≓ デル る地震のモデル ℃	・活断層として認定して断層の位置、長さを設定 ・日本海調査検討会による設定断層、本プロジェクトの断層データ、文献の断層 データをもとに設定 ・既往地震、津波の再現断層モデルの検証において断層に起因する歴史地震の 津波痕跡がデータ不足
(2)		(2-1)解釈された断層の連動で 発生する地震のモデル ・不確実性を考慮	・解釈された断層で発生する地震より頻度が低く、規模が大きい地震を想定 ・連動の範囲の設定方法の検討 ・特に大規模な地震の想定には「プレート境界型」の概念の扱い、超巨大地震の
解釈された断層モナルをもとにした 分割および運動モデル			考え力を考慮
ハザード評価のための断層モデ ル		(2-1)解釈された断層の一部で 発生する地震のモデル	・解釈された断層で発生する地震より頻度が高く、規模の小さい地震を想定 ・沿岸に影響する可能性がある最も小さい規模の地震の設定の検討が必要 (津波遡上範囲の広さで影響度を評価して断層モデルを設定)

これらの考え方から、日本海調査検討会で設定された断層モデル群を参考に、本プロジ ェクトで提供された断層のモデル化を行った。断層モデルの設定時においては、以下の既 往文献及び先行研究も参照した。

【日本海海域における断層モデルの作成方法を系統的にまとめた公表資料】

- ・土木学会原子力委員会津波評価部会(2002):原子力発電所の津波評価技術
- ・原子力規制庁(2013):基準津波及び耐津波設計方針に係る審査ガイド(案)
- ・内閣府(2007):日本海の津波調査業務 報告書

【日本海海域における活断層及び活構造の資料】

- ・藤田ほか(1991):日本海周辺における活断層の分布が示されている。
- ・徳山ほか(2001):日本海周辺の活断層及び活構造の分布が示されている。
- ・日本海調査検討会海底断層ワーキンググループ(2014):
 日本海調査検討会における断層モデル設定の基本となった断層データ及び地殻構造などが示されている。

・地震調査推進本部(2005[~]2015):日本海海域の断層についての長期評価。

② 断層パラメータの設定方法

断層モデルのパラメータは、本プロジェクトで提供された断層に関するデータをもとに、 日本海調査検討会海および日本海調査検討会海底断層 WGの結果を考慮し、またその他既往 文献・先行研究についても参照して設定した。

a. 位置・形状・長さ・走向

断層モデルの上端の位置は、音波探査断面で得られた断層の海底面との交点の位置で設定する。音波探査断面による断層と海底面と交点の位置データから描いた断層トレースを 直線で近似し、断層上端及び下端の深度と断層傾斜角から断層幅を設定して矩形断層でモ デル化する(図Ⅱ.ii-2)。断層トレースの直線近似は、直線的なトレースに対しては、ト レースの起点と終点を直線で結んで近似し、途中で大幅に走向を変えるようなトレースの 場合は複数のブロックに区切って近似する。断層の長さは、矩形の断層上端部の合計の長 さとし、走向についても、この線に沿う。

長さが極端に短い断層については、地震調査研究推進本部による「活断層の長期評価手法」報告書*に基づき、全体の長さが18kmとなるように、断層の両端部を延長した(図 II.ii-3)。

※「活断層の長期評価手法」報告書 (地震調査研究推進本部 地震調査委員会 長期評価部 会(暫定版)、平成22年11月25日)

この中では、「地表に変位が現れている活断層については、最低限考慮すべき地震の規模 として M6.8 を設定する。」とされており、(解説)において、「「短い活断層」と判断する「起 震断層」の長さは、15~18km程度を目安とする。」とされている。また、原子力施設の耐震安 全審査においても、同様の考え方が採用されている。

図Ⅱ.ii-3 断層長が短い場合の設定方法

断層の位置情報については、堆積層の内部での断層の分岐や消滅、反射断面の精度など の問題で実際には断層が続いていたとしても確認できなかった可能性がある。もしくは、 測線の直前で途切れている可能性も考えられる。ここでは、断層の位置や長さにはこれら の偶然的および認識論的な不確実性が含まれていると考える。

b. 断層の上端及び下端

断層の上端は原則として海底面とし、下端は日本海調査検討会海底断層WGによる地質 構造区分に従い、15kmとする(図II.ii-4参照)。ただし、断層の上端及び下端深度につい ては地震モーメントと断層すべり量に関係し、津波の高さに影響をあたえるため、設定に あたっては微小地震の分布における D10、D90 深度分布及び津波波高のパラメータスタディ も参照した。

図 II.ii-4 日本海調査検討会海底断層 WG報告書から引用。元は佐藤ほか(2014)による a)日本海の地殻構造の区分、か日本海東部の地震発生層概念図。これらをもとに、日本海調 査検討会では、A. 海洋地殻=18 km、B.厚い海洋地殻=25 km、C.背弧リフト=18 km、D.大陸性 地殻=15 kmとしている。

<D10 及び D90 の深度の設定方法>

対象領域に 10 km間隔のグリッドを配置し、そのグリッドを中心とした円柱を設定する。 円柱のなかに入る震源データを取り出して、それらの 90%が含まれる深さを D90、10%が 含まれる深さを D10 とする。今回、円柱のサイズは、半径 20 km、高さ 30 kmとし、円柱に 入る震源の数が 50 個以上の場合のみ、D10 及び D90 を計算することとしている(図Ⅱ. ii -5 参照)。

図Ⅱ.ii-5 D10 及び D90 の推定方法の概念図

気象庁による 1923 年~2013 年までの日本海沿岸域の震源データを検討すると図Ⅱ.ii-6 のようになり、今回、検討の対象となっている能登半島より西の領域は、日本海東縁部に 比べると D90 深度が浅いことがわかる。能登半島より西の領域の D90 深度はおおむね 10 km~20 km程度に分布しており、今回の断層下端に設定はおおむね妥当といえる。しかしな がら、海域部分のデータは少なく、観測点からの距離も離れているために震源の深さの不 確実性は大きく、特に D10 深度については震源分布から判断することは難しい。

なお、本プロジェクトで得られた断層上端及び下端に相当するデータとしては、各測線 での、変位が確認されたいちばん浅い深度といちばん深い深度の値もある。しかしながら、 これらのデータは、あくまでも「確認された範囲」であり、これより浅い部分及び深い部 分に断層が続いていないと断定できるものではない。事実、数十 km の長さの断層が定義 されているにもかかわらず、変位が確認されたいちばん深い部分の深度が数100m程度と、 表層のみの場合もあり、この情報のみからでは断層下端深度を決定することはできない。 ただし、変位が確認されたいちばん浅い部分の深さは1つの断層(025_Wakasa)を除いて、 すべては1 kmより浅くなっている。断層上端深度はこれよりも浅いと考えられることから、 断層上端深度を海底面(0 km)とすることは妥当であると考える。

c. 断層傾斜角

日本海調査検討会の方針と同様に横ずれ断層=90°、縦ずれ断層=45°±15°と一定の値 として設定したが、断層の傾斜角設定に資するデータとして、本プロジェクトでは見かけ 傾斜角が提供されているので(みかけ傾斜角については図Ⅱ.i-2参照)、これらのデータ も参照して決定した。

みかけ傾斜角の、各断層における平均値(個々の断層の見かけ傾斜角とみなす)につい ては**表 II.i**-2 に記しているが、これらの値をみると、横ずれ断層に対して、60°以下の 低角な値があるなど、そのまま使用することは難しい断層もあり、また、変位が確認され た最も深い部分の深度が数 100 mと浅く、表層のみで決定されているものもあるため、断 層傾斜角の設定は走向ごとに分類した断層傾斜角の平均値を確認したうえで、横ずれ断層 を 90°、縦ずれ断層は基本的には 45°(低角なものは 30°、高角なものは 60°)として 使用することとした。

本プロジェクトにおける各断層の見かけ傾斜角の分布は図II. ii-7 のようにまとめられる。

図Ⅱ.ii-7 本プロジェクトにおける見かけ傾斜角の分布

傾斜角の各範囲にある断層数を数えて表示したもの。

図Ⅱ. ii -7 において、横ずれ断層の大半では、傾斜角は 70°~90°の範囲にある。しか しながら、60°よりも低角の、横ずれ断層としては考えにくいような断層も、横ずれ断と 判断された断層の総数に対して1割以上含まれている。また、縦ずれ断層(正断層と逆断 層)は多くが30°~60°にあるが、縦ずれ断層の数自体は横ずれ断層よりも圧倒的に少なく、数のピークは卓越しない。横ずれ断層を走向で分類し、傾斜方向も考慮して傾斜角の 平均値を求めると表Ⅱ.ii-2に示す結果となる。

		Lat	eral	Normal	Reverse
0-45	東	*	60	*	*
180-225	西	-60	-00	*	63
45-90	東	68.66667	07.0	48	*
225-270	西	-63.8667	-87.0	*	41
90-135	西	73.6	00.75000	*	*
270-315	東	-74.0833	89./0833	*	*
135-180	西	71.85714	00.0714	*	*
315-360	東	-68	-88.0/14	*	32

表Ⅱ.ii-2 本プロジェクトにおける走向ごとの断層傾斜角

ここで、横ずれ断層の走向が 0°~45°及び 180°~225°のデータ数は少ないためにこ れ以外のものの平均傾斜角をみると、90°に近い値になっている。この結果からみて、日 本海調査検討会の断層モデルで使用された基準で本プロジェクトにおける断層データの断 層傾斜角はおおむね表現することが可能であると考える。日本海調査検討会の基準でカバ ーされる範囲と、本プロジェクトのデータによる見かけ傾斜角の比較を図Ⅱ. ii-8 に示す。

図Ⅱ.ii-8 本プロジェクトにおける見かけ傾斜角と断層走向との関係

断層の走向には断層傾斜方向に関する情報が含まれている。a)横ずれ断層に関する検討。 青い網掛け部分が日本海調査検討会の基準によってデータが包含される範囲を示す。日本 海調査検討会では一律 90°としているが、ここでは縦ずれ断層の例にならって、±15°の 範囲を設けている。 b)縦ずれ断層に関する検討。赤い網掛け部分は日本海調査検討会の 基準によって包含される範囲を示す。日本海調査検討会では、45°±15°の範囲としてい る。

d. 断層の幅

断層の上端深度、下端深度と断層傾斜角から設定する。ただし、断層の幅が長さを超え ないように調整する。日本海調査検討会では断層長と断層幅のアスペクト比は2:1を越え ないように設定されているが、本プロジェクトは日本海調査検討会で検討されたよりも短 い断層についても扱うため、地震調査研究推進本部による「内陸活断層の強震動評価レシ ピ(以下「強震動レシピ」と省略)」と同様にアスペクト比は1:1以下とした。

e. 断層のすべり角

本プロジェクトではすべり角もしくはそれを推定できるデータは提供されていない。ま た、日本海調査検討会で使用された広域応力場のデータを使用することができなかったた め、個々の断層についてすべり角を再解析することはできなかった。よって、日本海調査 検討会の断層すべり角から推定し設定する。近隣に似たような断層タイプの日本海調査検 討会のモデル断層が設定されておらず、日本海調査検討会によるモデル断層から推定でき ない場合には強震動レシピから、逆断層= 90°、正断層= 270°、左横ずれ断層= 0°、右 横ずれ断層=180°と設定する。

f. すべり量

断層のすべり量は断層面 S(m²) と地震モーメント Mo(Nm)のスケーリング式から設定 する。スケーリング則については、検討の余地は残るが、本年度の作業としては、日本海 調査検討会のスケーリング則から平均的な関係式と防災上の観点から平均すべり量のばら つきを考慮して大きなすべり量を想定するために設定した関係式を採用し、ばらつきとし て考慮する。

日本海調査検討会におけるすべり量の設定方法は、次の通りである。

*μ*式

μ 式は平均的な地震規模を求める式である。平均すべり量は 4.5 m で飽和する。 計算手順は以下のようになる。

① 断層面積 (S [m²]) から M_o [Nm]を求める $M_o = (S/2.23*10^9)^{3/2}*10^{-7}$ ($M_w > 6.5$) $M_o = (S/4.24*10^5)^2*10^{-7} (6.5 \le M_w < 7.7)$ $M_o = 1.54*S*10^{11}$ ($7.7 \le M_w$) ② 平均すべり量を求める $M_o = \mu DS$ 、 $\mu = 3.34*10^{10}$ [Nm] logMo=1.5Mw+9.1

*σ*式

σ式は防災上の観点から、より大きいすべり量との地震規模を求める式であり、μ式で 求められた平均すべり量に 1.5 mを加算する。平均すべり量は 6.0 mで飽和する。 計算手順は、μ式によって平均すべり量を計算したあと、その値に 1.5 mを加算し、地震 モーメントを再計算する。

今回は、平均的な地震規模として µ 式による値を示し、また不確実性を考慮した値を併 記することのより、ばらつきの範囲として評価する。本プロジェクトによるデータは、断 層の長さは、変位が確認された測線間の長さとなるため、実際よりも短くなっているとい う性格に留意する必要がある。その結果、地震モーメントは小さめに評価される傾向があ り、断層長が今回、示されているデータよりも長い可能性を考慮して、このようなばらつ きを設定した。 ③基本断層モデルの設定

a. 基本断層モデル

前項((ii)-②)を通して説明した方法によりパラメータを設定し、作成した単純な矩 形断層モデルが基本断層モデルである。本来、基本断層モデルでは、地質構造の観点から 連続性を判断して設定することが必要であるが、地震断層として地下では連続しているが、 地下浅部の地質断層は、堆積層内部で分岐して、海底面付近で平行ないし雁行する場合が あるなど、偶発的な不確実性がある。また、観測手法に関する誤差や反射断面の読み取り 誤差のような解析手法に起因する誤差など、認識論的不確実性もある。以上の観点から、 これらの不確実性を考慮して、音波探査による個々の断層をグルーピングして、ひとつの 断層モデルとすることが必要である。基本モデルを確定するためのグルーピングの検討は 今後の課題である。この基本断層モデルをもとに、いくつかの断層を整理することによっ て、連動の可能性を考慮したモデルの作成を検討する予定である。

b. 断層の連動の可能性の検討

前述の図Ⅱ.i-1の断層モデルの設定方針に基づいて、前項でモデル化した基本断層モデルをもとに、連動の可能性を考慮した断層モデルを設定した。設定方針は次のとおりである(図Ⅱ.ii-9参照)。

- ・断層長が十分長く孤立している断層は、原則としてそのままで1本の断層とした。
- ・離隔距離が短く走向が同方向で断層タイプが同じもの、近接して平行ないし雁行して 配列し形成機構が同様と考えられるもの等については、まとめて、1本の断層連動型 モデルとした。
- ・断層長が短いものについては、基本断層モデルの作成において断層長を 18 kmに延長 しているが、さらに周辺の断層との傾斜方向の一致および断層タイプ、断層の離隔距 離等の関係から断層連動型モデルを検討した。

例えば、北九州、山口県沖、島根県沖の、離隔距離が短く平行に走るような断層群は、 地下深部に横ずれ断層としての主断層が存在し、これが地下浅部で分岐しているフラワー 構造(地下深部の横ずれ断層から地表へ広がっていく断層群)である可能性があると考え、1 本の断層にまとめて扱うこととした。

基本断層モデルから連動型断層モデルを設定する際のグルーピングの考え方の概念図

c. 断層情報が不完全な場合の断層モデルの設定

本プロジェクトにて提供された断層データは、先行する日本海調査検討会海底断層 WG で認定された断層と比較して位置が大きく逸脱することはなく、日本海調査検討会海底断 層 WG で断層が認定されていない場所についても断層の存在が想定されている(図II.i-1)。 たとえば、010_Hamada は歴史地震としてよく知られている 1872 年浜田地震(今村(1913) 及び島根県(2014) など)の震源断層に相当するが、この断層は日本海調査検討会海底断層 WG においては評価されていない(図II.i-1-c)。そのため、断層の存在については既往文 献、先行研究に遜色なく網羅されていると考えられる。

しかしながら、これらの断層は前述(**II-ii-①~②**(P.148~P.154))のように、変位 が確認された測線間の距離で表わされるため、実際の長さよりも短く認定されている傾向 がある。また、断層傾斜角についても、変位が確認されたいちばん浅い点からいちばん深 い点までの見かけ傾斜角であたえられるため、それが本来の震源断層の傾斜を表わしてい るとは限らない。また、実際の断層の下端の深さも明示的に示されてはいないため、これ らが、本プロジェクトで提供されたデータの補うべき点とした。

断層が短い場合には地震本部の強震動レシピおよび土木学会の考えを踏襲し、上部地殻 内の震源断層が地表に現れている場合には地下深部では 18 km程度以上の断層規模である と想定し、18 kmまで延長した。そのほか、断層傾斜角については、傾斜角を一般的な値で 仮定することによって補い、断層下端の深さについては、地質構造区分から値を設定する こととした。また、断層位置や、断層パラメータが、ばらつきを持つ値として扱うことに より、断層位置のずれ、パラメータのずれ、また、認定された断層の近隣に位置する未発 見の断層の存在をカバーすることができる。これらの情報の不完全さに起因するパラメー タのばらつきについて、沿岸の津波波高に対する影響を④で示す津波数値計算によるパラ メータスタディの実施で本検討の適切さやばらつきの範囲を評価した。

以上の作業により設定した波源断層の基本モデルを図Ⅱ. ii-10に示す。

図Ⅱ. ii -10 は本プロジェクトによる全断層トレースに矩形をあてはめて、単純にモデル 化した基本モデルである。これらのモデルをさらに分割することによって、より小さい規 模の地震を考慮し、グルーピングすることによって断層連動の可能性による、より大規模 な地震について検討する。

図Ⅱ.ii-10(1) 日本海西部の海域断層の基本モデル

図II.ii-10(2) 日本海西部の海域断層の基本モデル

④断層パラメータの不確実性の影響度評価

断層データの不完全さに起因する断層パラメータの不確実性の評価として、断層パラメ ータの違いが沿岸の津波波高にどのような影響をあたえるのかを見積もるため、実験用の 断層を選定し、津波のパラメータスタディを実施した。

地形や、基本となるパラメータの違いによる影響もあるため、パラメータスタディに使用する断層は鳥取県沖と、今回の断層モデル設定範囲外であるが、秋田県沖の断層の2つを選定した。パラメータスタディに用いる断層モデルは、日本海調査検討会によるモデル断層をもとに設定した(図II-ii-11)。

図 II.ii-11 パラメータスタディに使用した断層の位置 a)秋田県沖の断層(日本海調査 検討会モデル F31), b)鳥取県沖の断層(F55), 日本海調査検討会報告書(2014)に加筆 a. パラメータスタディ用断層モデルの設定方法

図 II. ii-11 に示すように、秋田県沖及び鳥取県沖の日本海調査検討会のモデル断層が設定されている位置に断層を設定する。このパラメータスタディで使用する断層モデルは日本海調査検討会のモデル断層を参照し設定した、仮想的な波源断層を想定する。断層の長さについては、秋田県沖と鳥取県沖の結果を比較できるように、両者を同じ長さ(72 km)に調整した。断層の上端及び下端深度はそれぞれ1 km と 18 km としている。平均すべり量は断層面積 S(m²)と地震モーメント M_o(Nm)のスケーリング則から計算した。スケーリング式は入倉・三宅(2001)(II. ii-②-g を参照)を使用した(パラメータスタディ用断層モデルの標準パラメータは表II. ii-4 を参照)。

	断層上端 (km)	断層下端 (km)	走向	傾斜	すべり角	断層長(km)	断層幅(km)	断層面積 (km2)	Mw(Nm)	平均すべり 量(m)
秋田県沖	1.0	18.0	201.8	45	90	72.0	24.1	1731.6	7.41	2.81
鳥取県沖	1.0	18.0	260.5	60	35	72.0	19.6	1413.4	7.30	2.29

表Ⅱ.ii-4 パラスタで使用した仮想断層の標準パラメータ

標準パラメータにより津波計算を行ったときの最大波高の分布を図Ⅱ.ii-12 と図Ⅱ.ii -13 に示す。また、ここに示した地名は、今後のパラメータスタディでの沿岸波高の検討 地点として使用する。

最大水位 (m)

図 II.ii-12 秋田県沖に設定した波源による津波波高の分布 断層パラメータは (strike, dip, rake) =(201.8, 45, 90), (L, W)=(72, 24.05), d=2.81, M_w=7.41 a)広域での最大水位分布 b)150 mメッシュ領域内での最大水位分布

図II.ii-13 鳥取県沖に設定した波源による津波波高の分布 断層パラメータは (strike, dip, rake) = (260.5, 60, 35), (L, W) = (72, 19.63), d=2.29, Mw=7.30 a) 広域での最大水位分布 b) 150m メッシュ領域内での最大水位分布 b. パラメータスタディの計算条件

今回のパラメータスタディにおける津波予測計算は、150mメッシュを最小メッシュ領域 とし、**表Ⅱ-ii-5**の条件で計算を行った。

百日	計算条件
坦	最小格子150m、日本海海域
支配方程式	非線形長波理論式
数値解法	後藤モデル(港湾研Ⅱ)または東北大モデル Staggered Leap-frog差分スキーム
計算領域	異なる格子間隔の領域を1∶3でネスティング
計算格子間隔	1350m、450m、150m (沿岸はすべて150m)
境界条件	陸側: 陸域への遡上計算 海側: 完全無反射で透過
地形データ	本プロジェクトにおける津波予測計算用地形
各種施設の取り扱い (堤防・水門等)	考慮なし
計算時間	12時間
計算時間間隔	安定性(CFL条件)を考慮して設定
初期水位	Okada(1992)で算定した地殻変動量から算出される海底地盤変動量 を初期水位として与える
潮位	T.P. = 0 m
打ち切り水深	10 ⁻ 2 m
粗度係数	一定值(0.025)

表Ⅱ.ii-5 津波予測計算の計算条件

c. パラメータスタディの実施と結果

このパラメータスタディにおいて検討対象のパラメータは、断層位置、断層深さ、傾斜 角、すべり角とそれらにともなって変化する断層幅、すべり量、すべり角、地震規模であ る。固定のパラメータは断層幅と走向である。

以下、今回、実施したパラメータスタディの概要とパラメータの一覧及び結果を示す。 ・パターン1:断層下端深度と断層傾斜角が変わる場合

断層上端深度を固定し、断層下端深度を変化させる。また、断層傾斜角も変化させる。 これらのパラメータが変化することによって、断層幅が変化し、地震規模も変化する。パ ターン1において変化するパラメータを表Ⅱ.ii-6に示す。ここでパラメータスタディを 行った全モデルを表Ⅱ.ii-7に示す。

断層位置	走向	傾斜	すべり角	断層長	断層幅	上端深度	下端深度	Mw	すべり量
×	常に一定	0	×	常に一定	0	×	0	0	0

表Ⅱ.ii-6 パターン1における可変パラメータ

図II.ii-14 パラメータスタディ パターン1の概念図

表Ⅱ.ⅲ-7 パターン1の全パラメータ

		Area	lat	lon	top	bottom	strike	dip	rake	L	W	slip	Mw
	Area 12 b16d45	12	39.604	139.767	1	17	201.8	45	90	- 72	22.63	2.64	7.38
	Area 12 b16d60	12	39.604	139.767	1	17	201.8	60	90	72	18.48	2.16	7.26
	Area 12 b16d75	12	39.604	139.767	1	17	201.8	75	90	72	16.56	1.93	7.2
	Area_12_b17d45	12	39.604	139.767	1	18	201.8	45	90	72	24.048	2.81	7.41
	Area_12_b17d60	12	39.604	139.767	1	18	201.8	60	90	72	19.63	2.29	7.3
	Area_12_b17d75	12	39.604	139.767	1	18	201.8	75	90	72	17.598	2.05	7.23
	Area_12_b18d45	12	39.604	139.767	1	19	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b18d60	12	39.604	139.767	1	19	201.8	60	90	72	20.79	2.43	7.33
	Area_12_b18d75	12	39.604	139.767	1	19	201.8	75	90	72	18.63	2.18	7.27
	Area_12_b19d45	12	39.604	139.767	1	20	201.8	45	90	72	26.874	3.14	7.48
	Area_12_b19d60	12	39.604	139.767	1	20	201.8	60	90	72	21.94	2.56	7.36
(ita	Area_12_b19d75	12	39.604	139.767	1	20	201.8	75	90	72	19.669	2.3	7.3
4	Area_12_b20d45	12	39.604	139.767	1	21	201.8	45	90	72	28.29	3.3	7.51
	Area_12_b20d60	12	39.604	139.767	1	21	201.8	60	90	72	23.09	2.7	7.39
	Area_12_b20d75	12	39.604	139.767	1	21	201.8	75	90	72	20.7	2.42	7.33
	Area_12_b22d45	12	39.604	139.767	1	23	201.8	45	90	72	31.12	3.63	7.56
	Area_12_b22d60	12	39.604	139.767	1	23	201.8	60	90	72	25.4	2.97	7.45
	Area_12_b22d75	12	39.604	139.767	1	23	201.8	75	90	72	22.77	2.66	7.38
	Area_12_b24d45	12	39.604	139.767	1	22	201.8	45	90	72	33.946	3.96	7.61
	Area_12_b24d60	12	39.604	139.767	1	22	201.8	60	90	72	27.714	3.24	7.5
	Area_12_b24d75	12	39.604	139.767	1	22	201.8	75	90	72	24.845	2.9	7.43
	Area_12_b25d45	12	39.604	139.767	1	26	201.8	45	90	72	35.36	4.13	7.64
	Area_12_b25d60	12	39.604	139.767	1	26	201.8	60	90	72	28.87	3.37	7.52
	Area_12_b25d75	12	39.604	139.767	1	26	201.8	75	90	72	25.88	3.02	7.46
	Area_19_b16d45	19	35.761	134.449	1	17	260.5	45	35	72	22.63	2.64	7.38
	Area_19_b16d60	19	35.761	134.449	1	17	260.5	60	35	72	18.48	2.16	7.26
	Area_19_b16d75	19	35.761	134.449	1	17	260.5	75	35	72	16.56	1.93	7.2
	Area_19_b17d45	19	35.761	134.449	1	18	260.5	45	35	72	24.048	2.81	7.41
	Area_19_b17d60	19	35.761	134.449	1	18	260.5	60	35	72	19.63	2.29	7.3
	Area_19_b17d75	19	35.761	134.449	1	18	260.5	75	35	72	17.598	2.05	7.23
	Area_19_b18d45	19	35.761	134.449	1	19	260.5	45	35	72	25.46	2.97	7.45
	Area_19_b18d60	19	35.761	134.449	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d75	19	35.761	134.449	1	19	260.5	75	35	72	18.63	2.18	7.27
	Area_19_b19d45	19	35.761	134.449	1	20	260.5	45	35	72	26.874	3.14	7.48
.E	Area_19_b19d60	19	35./61	134.449	1	20	260.5	60	35	/2	21.94	2.56	/.36
ft	Area_19_b19d/5	19	35.761	134.449	1	20	260.5	/5	35	/2	19.669	2.3	/.3
μ	Area_19_b20d45	19	35./61	134.449	1	21	260.5	45	35	/2	28.29	3.3	7.51
	Area 19 b20d60	19	35.761	134.449	1	21	260.5	60	35	/2	23.09	2./	7.39
	Area_19_b20d/5	19	35./61	134.449	1	21	260.5	/5	35	/2	20.7	2.42	7.33
	Area_19_b22d45	19	35.761	134.449		23	260.5	45	35	72	31.12	3.63	7.56
	Area 19 b22d60	19	35./61	134.449	1	23	260.5	60	35	72	25.4	2.97	/.45
	Area_19_0220/5	19	35./61	134.449		23	260.5	/5	35	/2	22.11	2.66	7.38
	Area 19 b24d45	19	35./61	134.449	1	25	260.5	45	35	72	33.946	3.96	/.61
	Area_19_024000	19	35./61	134.449	1	25	260.5	60	35	/2	27.714	3.24	7.5
	Area_19_0240/0	19	35./61	134.449		25	260.5	/5	35	/2	24.845	2.9	7.43
	Area_19_023043	19	35./61	134.449		26	200.5	45	35	/2	35.36	4.13	7.64
		19	35./01	134.449	1	26	260.5	60	35	72	28.87	3.37	7.52

表Ⅱ. ii-7 のパラメータを使用し計算したパラメータスタディの結果を図Ⅱ-ii-15及び図 Ⅱ-ii-16 のグラフにまとめた。

縦軸は津波の最大波高、横軸は検討地点

縦軸は津波の最大波高、横軸は検討地点

このパラメータスタディにおけるモーメント量は秋田県沖においても、鳥取県沖におい ても同じであるにもかかわらず、全体的に鳥取県沖のほうが波高は低い傾向にある。鳥取 は、水深が浅く、またすべり角を低く設定しているために沿岸の波高が抑えられていると 考えられる。また、傾斜角の変化に対する波高の変化(三本線の間隔)は秋田が大きくな る傾向にある。

断層下端の深さに対する波高の変化は鳥取のほうが大きく、17 km~26 kmの区間で、秋田では4 m~5 mの変化に対して、鳥取では2.8 m~4.2 mと変化量は約 1.5 倍になっている。

・パターン2: すべり角が変化する場合

すべり角以外のパラメータをすべて標準モデルと同じとし、すべり角は標準モデルから ±15°を変化させる。パターン2において変化するパラメータを表Ⅱ.ii-8 に示す、ここ でパラメータスタディをおこなった全モデルを表Ⅱ.ii-9 に示す。

			-				•		
断層位置	走向	傾斜	すべり角	断層長	断層幅	上端深度	下端深度	Mw	すべり量
×	常に一定	×	0	常に一定	×	×	×	×	×

図Ⅱ.ii-17 パラメータスタディ パターン2の概念図。

		Area	lat	lon	top	bottom	strike	dip	rake	L	W	slip	Mw
	Area_12_b17d45r75	12	39.604	139.767	1	18	201.8	60	75	72	24.048	2.81	7.41
Akita	Area_12_b17d45r90	12	39.604	139.767	1	18	201.8	90	75	72	24.048	2.81	7.41
	Area_12_b17d45r105	12	39.604	139.767	1	18	201.8	60	105	72	24.048	2.81	7.41
	Area_19_b17d60r20	19	35.761	134.449	1	18	260.5	60	20	72	19.63	2.29	7.3
Tottori	Area_19_b17d60r35	19	35.761	134.449	1	18	260.5	60	35	72	19.63	2.29	7.3
	Area_19_b17d60r50	19	35.761	134.449	1	18	260.5	60	50	72	19.63	2.29	7.3

表Ⅱ.ii-9 パターン2の全パラメータ

表Ⅱ. ii-9のパラメータを使用し計算したパラメータスタディの結果を図Ⅱ. ii-18及び図 Ⅱ. ii-19のグラフにまとめた。

図 II - ii -18 秋田県沖におけるパターン2の計算結果 縦軸は津波の最大波高、横軸は検討地点

図II.ii-19 鳥取県沖におけるパターン2の計算結果 縦軸は津波の最大波高、横軸は検討地点

図Ⅱ-ii-18 及び図Ⅱ-ii-19 から同じ幅ですべり角を変化させているのに対して、秋田 ではほとんど変化がなく、鳥取では明確に変化している。これらの結果から、すべり角が 浅い場合には、すべり角の変化が波高に与える影響は大きくなるといえる。

・パターン3:断層上端深度と海岸からの距離がかわる場合

断層位置を標準モデルの位置から、「断層幅を海底投影した長さ」の1/2~5倍のピッチ で移動させると同時に、それぞれの場合の断層上端深度を0~2kmに変化させる。パターン 3において変化するパラメータを表II.ii-10に示し、ここでパラメータスタディを行なっ た全モデルを表II.ii-11に示す。なお、ここでは鳥取の断層下端深度を秋田よりも深くし ているが、それは鳥取の傾斜角が高いために、断層の移動距離が短くなることによる。

		- ·					-		
断層位置	走向	傾斜	すべり角	断層長	断層幅	上端深度	下端深度	Mw	すべり量
0	常に一定	×	×	常に一定	×	0	0	×	×

表Ⅱ.ii-10 パターン3における可変パラメータ

図Ⅱ.ii-20 パターン3の概念図

表Ⅱ.ⅲ-11	パター	ン3の≦	全パラメ-	ータ
---------	-----	------	-------	----

		Area	lat	lon	top	bottom	strike	dip	rake	L	W	slip	Mw
	Area_12_b17d45_half0k	12	39.621	139.711	0	17	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_single0k	12	39.639	139.655	0	17	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_double0k	12	39.674	139.542	0	17	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_triple0k	12	39.709	139.430	0	17	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_quadruple0k	12	39.744	139.317	0	17	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_quintuple0k	12	39.778	139.204	0	17	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_half1k	12	39.621	139.711	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_single1k	12	39.639	139.655	1	18	201.8	45	90	72	25.46	2.97	7.45
ita	Area_12_b17d45_double1k	12	39.674	139.542	1	18	201.8	45	90	72	25.46	2.97	7.45
Å,	Area_12_b17d45_triple1k	12	39.709	139.430	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_quadruple1k	12	39.744	139.317	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_quintuple1k	12	39.778	139.204	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_half2k	12	39.621	139.711	2	19	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_single2k	12	39.639	139.655	2	19	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_double2k	12	39.674	139.542	2	19	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_triple2k	12	39.709	139.430	2	19	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_quadruple2k	12	39.744	139.317	2	19	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_quintuple2k	12	39.778	139.204	2	19	201.8	45	90	72	25.46	2.97	7.45
	Area_19_b18d60_half0k	19	35.807	134.440	0	18	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_single0k	19	35.854	134.430	0	18	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_double0k	19	35.946	134.411	0	18	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_triple0k	19	36.039	134.392	0	18	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_quadruple0k	19	36.132	134.373	0	18	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_quintuple0k	19	36.224	134.354	0	18	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_half1k	19	35.807	134.440	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_single1k	19	35.854	134.430	1	19	260.5	60	35	72	20.79	2.43	7.33
tor	Area_19_b18d60_double1k	19	35.946	134.411	1	19	260.5	60	35	72	20.79	2.43	7.33
101	Area_19_b18d60_triple1k	19	36.039	134.392	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_quadruple1k	19	36.132	134.373	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_quintuple1k	19	36.224	134.354	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_half2k	19	35.807	134.440	2	20	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_single2k	19	35.854	134.430	2	20	260.5	60	35	72	20.79	2.43	7.33
1	Area_19_b18d60_double2k	19	35.946	134.411	2	20	260.5	60	35	72	20.79	2.43	7.33
1	Area_19_b18d60_triple2k	19	36.039	134.392	2	20	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_quadruple2k	19	36.132	134.373	2	20	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_quintuple2k	19	36.224	134.354	2	20	260.5	60	35	72	20.79	2.43	7.33

表Ⅱ. ü-11のパラメータを使用し計算したパラメータスタディの結果を図Ⅱ. ü 21及び図Ⅱ. ü-22のグラフにまとめた。

図II.ii-21 秋田県沖におけるパターン3の計算結果 縦軸は津波の最大波高、横軸は検討地点

図 II.ii-22 鳥取県沖におけるパターン3の計算結果 縦軸は津波の最大波高、横軸は検討地点

また、表Ⅱ. ii -10 及び表Ⅱ. ii -11、図Ⅱ. ii -20 及び図Ⅱ. ii -21、図Ⅱ. ii -22 と同じ考 えかたで、断層の移動方向が異なる場合についても検討した(図Ⅱ. ii -23)。

図Ⅱ.ii-23 パターン3'の概念図

		Area	lat	lon	top	bottom	strike	dip	rake	L	W	slip	Mw
	Area_12_b17d45_half0k_inv	12	39.575	139.675	0	17	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_single0k_inv	12	39.547	139.583	0	17	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_double0k_inv	12	39.490	139.400	0	17	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_triple0k_inv	12	39.433	139.215	0	17	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_quadruple0k_inv	12	39.376	139.031	0	17	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_quintuple0k_inv	12	39.319	138.847	0	17	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_half1k_inv	12	39.575	139.675	1	18	201.8	45	90	72	25.46	2.97	7.45
_	Area_12_b17d45_single1k_inv	12	39.547	139.583	1	18	201.8	45	90	72	25.46	2.97	7.45
cita	Area_12_b17d45_double1k_inv	12	39.490	139.400	1	18	201.8	45	90	72	25.46	2.97	7.45
Ą	Area_12_b17d45_triple1k_inv	12	39.433	139.215	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_guadruple1k_inv	12	39.376	139.031	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_quintuple1k_inv	12	39.319	138.847	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_half2k_inv	12	39.575	139.675	2	19	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_single2k_inv	12	39.547	139.583	2	19	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_double2k_inv	12	39.490	139.400	2	19	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_triple2k_inv	12	39.433	139.215	2	19	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_quadruple2k_inv	12	39.376	139.031	2	19	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_quintuple2k_inv	12	39.319	138.847	2	19	201.8	45	90	72	25.46	2.97	7.45
	Area_19_b18d60_half0k_inv_inv	19	35.807	134.459	0	18	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_single0k_inv	19	35.854	134.468	0	18	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_double0k_inv	19	35.946	134.487	0	18	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_triple0k_inv	19	36.039	134.506	0	18	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_quadruple0k_inv	19	36.132	134.525	0	18	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_quintuple0k_inv	19	36.224	134.544	0	18	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_half1k_inv	19	35.807	134.459	1	19	260.5	60	35	72	20.79	2.43	7.33
·=	Area_19_b18d60_single1k_inv	19	35.854	134.468	1	19	260.5	60	35	72	20.79	2.43	7.33
to	Area_19_b18d60_double1k_inv	19	35.946	134.487	1	19	260.5	60	35	72	20.79	2.43	7.33
Tot	Area_19_b18d60_triple1k_inv	19	36.039	134.506	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_quadruple1k_inv	19	36.132	134.525	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_quintuple1k_inv	19	36.224	134.544	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_half2k_inv	19	35.807	134.459	2	20	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_single2k_inv	19	35.854	134.468	2	20	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_double2k_inv	19	35.946	134.487	2	20	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_triple2k_inv	19	36.039	134.506	2	20	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_quadruple2k_inv	19	36.132	134.525	2	20	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_quintuple2k_inv	19	36.224	134.544	2	20	260.5	60	35	72	20.79	2.43	7.33

表II.ii-12 パターン3'の全パラメータ

表Ⅱ. ii -12 のパラメータを使用し計算したパラメータスタディの結果を図Ⅱ. ii -24 及び 図Ⅱ. ii -25 のグラフにまとめた。

図II.ii-24 秋田県沖におけるパターン3'の計算結果 縦軸は津波の最大波高、横軸は検討地点

図 II.ii-25 鳥取県沖におけるパターン 3'の計算結果 縦軸は津波の最大波高、横軸は検討地点

秋田の例のように、海岸から同じ距離で断層を離していっても、断層の移動方向によっ て結果のばらつきが大きくかわることがある(図Ⅱ.ii-21 及び図Ⅱ.ii-24)。これは、図 Ⅱ.ii-24 のほうが、断層の走向に平行する成分の移動が大きいためにこのような結果にな っていると考えられる。同様の検討をおこなった鳥取では、断層の走向がほぼ東西で水平 であるために、断層の移動方向にたいする影響を受けにくかったと考えられる(図Ⅱ.ii -22 及び図Ⅱ.ii-25)。

これらの結果から、断層走向に直交するような移動の影響は移動方向や断層の走向など 関係する要因によって、影響の度合いが変化することがわかる。とくに海岸線に直交する 成分の移動より、海岸線に平行する成分の移動が結果に大きく影響する。

・パターン4:断層を走向に平行な方向に移動させる場合

断層を、走向に平行な方向に「断層の長さ」の 1/2 ピッチ及び 1 ピッチで移動させた。 また、さらに、断層の走向に直交する方向でも、「断層幅を海底投影した長さ」の 1/2 ピッ チ及び 1 ピッチで移動させた。

パターン4において変化するパラメータを表Ⅱ.ii-13に示し、ここでパラメータスタデ ィを行った全モデルを表Ⅱ.ii-13に示す。

			•				•		
断層位置	走向	傾斜	すべり角	断層長	断層幅	上端深度	下端深度	Mw	すべり量
0	常に一定	×	×	常に一定	×	×	×	×	×

表Ⅱ.ii-13 パターン4における可変パラメータ

図Ⅱ.ii-26 パターン4の概念図

表Ⅱ.ⅲ-14 パターン4の全パラメータ

		Area	lat	lon	top	bottom	strike	dip	rake	L	W	slip	Mw
	Area_12_b17d45_halfdip	12	39.621	139.711	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_singledip	12	39.639	139.655	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_doubledip	12	39.674	139.542	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_halfstrike	12	39.302	139.611	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_12_b17d45_singlestrike	12	39.000	139.455	1	18	201.8	45	90	72	25.46	2.97	7.45
_	Area_12_b17d45_halfhalf	12	39.284	139.555	1	18	201.8	45	90	72	25.46	2.97	7.45
kita	Area_12_b17d45_singlesingle	12	38.965	139.343	1	18	201.8	45	90	72	25.46	2.97	7.45
4	Area_13_b17d45_halfdip	13	39.621	139.711	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_13_b17d45_singledip	13	39.639	139.655	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_13_b17d45_doubledip	13	39.674	139.542	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_13_b17d45_halfstrike	13	39.302	139.611	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_13_b17d45_singlestrike	13	39.000	139.455	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_13_b17d45_halfhalf	13	39.284	139.555	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_13_b17d45_singlesingle	13	38.965	139.343	1	18	201.8	45	90	72	25.46	2.97	7.45
	Area_18_b18d60_halfdip	18	35.807	134.459	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_18_b18d60_singledip	18	35.854	134.468	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_18_b18d60_doubledip	18	35.946	134.487	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_18_b18d60_halfstrike	18	35.815	134.842	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_18_b18d60_singlestrike	18	35.868	135.235	1	19	260.5	60	35	72	20.79	2.43	7.33
·=	Area_18_b18d60_halfhalf	18	35.861	134.852	1	19	260.5	60	35	72	20.79	2.43	7.33
to.	Area_18_b18d60_singlesingle	18	35.961	135.254	1	19	260.5	60	35	72	20.79	2.43	7.33
101	Area_19_b18d60_halfdip	19	35.807	134.459	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_singledip	19	35.854	134.468	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_doubledip	19	35.946	134.487	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_halfstrike	19	35.815	134.842	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_singlestrike	19	35.868	135.235	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_halfhalf	19	35.861	134.852	1	19	260.5	60	35	72	20.79	2.43	7.33
	Area_19_b18d60_singlesingle	19	35.961	135.254	1	19	260.5	60	35	72	20.79	2.43	7.33

表Ⅱ. ii -14 のパラメータを使用し計算したパラメータスタディの結果を図Ⅱ. ii -27 及び 図Ⅱ. ii -28 のグラフにまとめた。

図 II.ii-27 秋田県沖におけるパターン4の計算結果 縦軸は津波の最大波高、横軸は検討地点

パターン3でも明らかだったが、走向に平行した移動は、ここで挙げた例の場合、走向 に直交した移動よりも影響がはるかに大きい。秋田の例も、鳥取の例も、断層は海岸線と 並行するように存在している。そのため、走向に平行する移動は、単に海岸からの距離が 近づいたり離れたりするよりも、波源からの直接の波が到来する範囲や方向に大きな違い が出てくるためにばらつきが大きくなる。 【パラメータスタディ結果のまとめ】

これら、パラメータスタディの結果から、沿岸における津波波高にもっとも影響をおよぼすパラメータは断層の位置、特に海岸に平行した成分であることがわかった。

断層の上端及び下端の深さについては、固定した値で考えても影響は少ないと考えられ、 また断層傾斜角やすべり角についても、ある一定の範囲のばらつきとして評価することが できると考えられる。しかしながら、断層の位置については、断層が移動することによっ て、波が影響する範囲自体が複雑に変わってくるために、ある程度細かく考慮する必要が ある。

今回、断層の長さは 72 km としてパラメータスタディを行ない、走向に平行するような 移動が 1/2 ピッチであっても大きな影響がでている。よって、この事例では 1/4 ピッチな ど、もっと細かいピッチでの移動を検討する必要性があり、更には、断層の位置に関する パラメータのばらつきとしては、断層の長さによって適切に考える必要があるといえる。 72 kmの断層であれば、走向に平行した移動は 1/2 ピッチで 36 km であるが、仮に 36 km の 断層であれば 18 km であるので、同じ 1/2 ピッチでも移動距離は異なり、津波が海岸にお よぼす影響の度合いも変わってくると考えられる。 (ⅲ) 日本海海域で設定される断層モデルの検証

日本海海域で設定される断層モデルの検証を実施するため、国土交通省、内閣府、文部科学省を事務局として進められた日本海における大規模地震に関する調査検討会(以下、日本海調査検討会)で設定された日本海の海域活断層モデル群を対象に、既往の被害地震の再現が可能な断層モデルについて検討する。検討によって抽出する断層モデルを用いて 津波予測計算を行い、計算で得られる津波高さと痕跡値との比較を行なう。対象とした波 源断層及び断層モデルについては、(I)準備 「b) 収集整理結果(P.111~P.120)」の 部分に、歴史地震・津波のとりまとめで示した。

① 検証で使用する断層モデルの抽出

本検討で対象とした地震、1792年北海道西方沖地震、1940年神威岬地震及び1971年 サハリン西方沖地震の震源域と、日本海調査検討会によって設定された断層モデルの位置 (前出の図I.1-1-a~f)から、1833年庄内沖の地震や1940年神威岬地震の震源域付近に 断層モデルが比較的多く設定されていることがわかる。また、表II.iii-1に示したとおり、 痕跡の数(津波痕跡データベース、東北大)においても、1833年庄内沖の地震や1940年 神威岬地震が他の地震より多い。

これら6つの地震のうち1833年庄内沖の地震と1940年神威岬地震は、震源域付近に 断層モデルが多く設定されており、また計算結果と比較できる痕跡の数が多いので、この 2つを断層モデル検証の対象とした(図Ⅱ.iii-1)。一方、1792年北海道西方沖地震、1793 年鰺ヶ沢地震、1804年象潟地震、1971年サハリン西方沖地震については、震源域付近に対 応する断層モデルが少なく痕跡の数も少ないため、検証対象から除外した。

地震名	痕跡の数	信頼度 AB の痕跡の数
1792年北海道西方沖地震	1	0
1793 年鯵ケ沢地震	4	0
1804 年象潟地震	13	0
1833 年庄内沖の地震	79	6
1940年神威岬地震	116	5
1971年サハリン西方沖地震	0	0

表Ⅱ.ⅲ-1 痕跡値の数と信頼度(赤色の行は断層モデルの抽出の対象とした地震)

1940年神威岬地震の断層モデルを検証するため、震源域に対応している断層モデルを抽 出する。1940年神威岬地震の震源域付近にある日本海調査検討会において設定された断層 モデルはF07、F08及びF09である。また、神威岬地震の主な既往研究に、Satake(1986)、 Fukao and Furumoto (1975)、Okamura *et al.* (2005)らが検討した断層モデルがある。こ れらの断層モデルのパラメータを**表Ⅱ. ⅲ-2**にまとめ、位置を図Ⅱ. ⅲ-2 に示した。

図II.iii-1(既出) 既往地震の波源域(黄)と日本海調査検討会が設定した断層モデル(青) の位置(日本海における大規模地震に関する調査検討会報告書、2014 から抜粋し波源域を 加筆)

日本海調査検討会の断層モデル F07 と F08 の走向の角度は、他の断層モデルの走向と 比べ、およそ 180 度違う。また、Fukao and Furumoto (1975)の断層モデルの断層長さが他 の断層モデルと比べ、およそ 2 倍長い (**麦Ⅱ. iii - 2**, **図Ⅱ. iii - 2**)。

本検討では、まず、断層モデルの走向と断層長さが比較的近い値である日本海調査検討会の F09 と Satake (1986)の断層モデルを使って検証を実施した。参考として、本プロジェクトでの断層モデルのパラメータ案を表Ⅱ.iii-3 に示す。

表Ⅱ.ⅲ-2 1940年神威岬地震の震源域付近で設定されている断層モデルのパラメータ

断層 モデ ル名	出典	Mw	緯度 deg N	経度, deg E	上端深 さ,km	走向, deg	傾 斜,deg	すべり 角,deg	断層長 さ,km	断層 幅,km	平均す べり 量,m
			44.5843	139.555 6		176	45	54	29.0	17.9	
F07	日本海調 査検討会	7.4	44.3286	139.581 8	2.4	201	45	76	21.6	17.9	3.70
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	139.485 6		167	45	48	25.3	17.9		
			44.1467	140.191 2		218	45	93	31.3	18.4	
F08	日本海調 査検討会	7.4	43.9197	139.950 0	2.0	189	45	77	20.9	18.4	3.75
			43.7285	139.910 6		153	45	63	23.1	18.4	
		43.6888	139.185 3		347	30	103	24.4	27.9		
F09	日本海調 査検討会	7.6	43.8979	139.116 6	4.0	2	30	104	29.2	27.9	4.78
			44.1640	139.129 8		347	30	103	18.8	27.9	
Fukao 1975	Fukao and Furumoto ,1975	7.6	42.82	139.03	-	0	46	90	170	50	1.10
Satak e1986 _E2	Satake, 1986	7.4	43.73	139.53	0.0	347	40	90	100	35	1.50
Olivers	Ohermung		44.57	139.34	-	22	45	-	42	16	1.64
Ukam	Okamura	7 5	44.55	139.58	-	184	45	-	42	16	2.23
05	2005	1.5	44.17	139.48	-	162	45	-	37	16	2.74
05	2005		43.69	139.13	-	0	45	-	53	16	0.58

(日本海における大規模地震に関する調査検討会報告書、2014 に 0kamura et al. (2005)を加筆)

表Ⅱ.iii-3 1940年神威岬地震に対応する断層モデルのパラメータ

(本プロジェクト)

断層 モデル名	出典	Mw	緯度 deg N	経度, deg E	上端深 さ,km	走向, deg	傾 斜,deg	すべり 角,deg	断層長 さ,km	断層 幅,km	平均す べり 量,m
KAMUI	本プロジ	7 1	44.5840 7	139.570 2	1.0	184	72		44.5	147	1 0
	ェクト	7.1	44.1866 9	139.502 2	1.0	170		-	28.8	14.7	1.0

図 II.iii-2 1940 年神威岬地震の震源域付近における日本海調査検討会設定の断層モデル (F07、F08、F09)の位置と既往の研究で設定された断層モデルの位置

1833 年庄内沖地震の断層モデルを検証するため、震源域に対応している断層モデルを抽 出した。日本海調査検討会の断層モデルF34と既往研究の断層モデル相田(1989)のパラメ ータを表Ⅱ.ⅲ-4 に示す。また、これらの断層モデルの位置を図Ⅱ.ⅲ-3 に示す。地震の 規模や震源メカニズムなどでは両者に大きな差はないが、断層モデルの位置は重なる。こ の図から、1833 年庄内沖地震の震源断層については、日本海調査検討会が設定したF34 断 層モデルを対応させることとした。参考として、本プロジェクトでの断層モデルのパラメ ータ案を表Ⅱ.ⅲ-5 に示す

表 II.iii-4 1833 年庄内沖地震の震源域付近における断層モデルのパラメータ (日本海における大規模地震に関する調査検討会報告書、2014)

断層 モデル名	出典	Mw	緯度 deg N	経度, deg E	上端深 さ,km	走向, deg	傾 斜,deg	すべり 角,deg	断層長 さ,km	断層 幅,km	平均す べり 量,m
F34	日本海調	7.7	39.05	139.73	1.1	211	45	106	71.9	19.7	5.45
	查検討会		38.49	139.31		197	45	97	52.0	19.7	
Aida1989	相田,	8.0	39.39	139.76	2.0	190	60	90	50.0	40.0	7.95
	1989		38.87	139.60		220	60	61	70.0	40.0	

表 Ⅱ. iii-5 1833 年庄内沖地震に対応する断層モデルのパラメータ (本プロジェクト)

断層 モデル名	出典	Mw	緯度 deg N	経度, deg E	上端深 さ,km	走向, deg	傾 斜,deg	すべり 角,deg	断層長 さ,km	断層 幅,km	平均す べり 量,m
SHONAI	本 プロ ジ ェ ク ト	7.2	39.0240	139.713 2	0.0	206	62	-	67.2	17.0	1.9

図 II.iii-3 1833 年庄内沖地震の震源域付近における日本海調査検討会設定の断層モデル (F34)の位置と既往の研究で設定された断層モデルの位置

② 断層モデルのパラメータスタディ

検証の対象となりうる 1940 年神威岬地震と 1833 年庄内沖地震のうち、まず 1940 年神 威岬地震のパラメータスタディを実施した。

1940年神威岬地震のパラメータスタディの設定は、日本海調査検討会の断層モデル F09の大すべりの位置を変える既往のパラメータスタディ(日本海における大規模地震に 関する調査検討会、2014)を参考にした。

図Ⅱ.ⅲ-4 は日本海調査検討会の断層モデル F09 を使った既往パラメータスタディの 概要図である。この既往パラメータスタディでは、3 枚の矩形で作成された断層モデルの 大すべりの位置を変えることで、最大津波水位への感度を調べている。大すべりの動かし 方は 5 パターンあり、図Ⅱ.ⅲ-4 の断層モデルの位置を示した 5 つのパネルに対応してい る。図Ⅱ.ⅲ-4 のとおり、大すべりの位置は各矩形断層の(1)右側、(2)中央、(3)左側、(4) 隣接 LRR、(5)隣接 LLR に設定されている。

図Ⅱ.iii-4 日本海調査検討会の断層モデル F09 の大すべり(緑)の位置を5つのパターン で設定し実施された既往パラメータスタディの概要図(日本海における大規模地震に関す る調査検討会報告書、2014 から抜粋)

③ 津波予測計算の条件設定

津波予測計算の条件設定を、表Ⅱ.ⅲ-6 に示す。各メッシュの計算領域は図Ⅱ.ⅲ-6 に示した。

百日	計算条件					
	最小格子 50 m, 日本海海域					
支配方程式	非線形長波理論					
エデル・粉値解注	後藤モデル(港空研 II)、東北大学モデル					
し アル 数 値 府 仏	Staggered Leap-frog 差分スキーム					
	異なる格子間隔の領域を 1:3 でネスティング					
計算領域	各波源に対して沿岸での水位変動が±1m以上となる領域を考					
	慮する					
計算格子間隔	計算格子間隔: 1350, 450, 150, 50 m (沿岸域は全て 50m)					
倍因冬代	陸側: 陸域への遡上計算					
现外本日	海側: 完全無反射で透過					
地形データ	50mメッシュ計算領域(1~55):図4参照					
各種施設の取り扱						
V)	各種施設は考慮しない					
(堤防・水門等)						
計算時間	6 時間					
計算時間間隔	安定性(CFL 条件)を考慮して適切に設定					
初期水位	0kada (1992) で算出した海底地盤変位量の鉛直成分を与える					
潮位	T. P. = 0 m					
打ち切り水深	10^{-2} m					
粗度係数	一定值 (0.025)					

表Ⅱ.ⅲ-6 津波予測計算の計算条件

津波予測計算の結果と痕跡値との比較・検証

津波予測計算の結果から汀線付近(評価点)での最大津波水位を抽出し図Ⅱ.ⅲ-5 に 示した。横軸の番号は図Ⅱ.ⅲ-6 に示した領域を表し、領域 55 の福岡から領域1の知床岬 までに対応している。但し、無人島である領域19 と 20 には評価点がないため、グラフに 表示されない。図Ⅱ.ⅲ-5 (a)から(e)は、日本海調査検討会によって設定された断層モデ ルF09 の大すべりの位置を変えたパラメータスタディ5パターン(図Ⅱ.ⅲ-4)の結果を、 (f)は Satake1986_E2 の断層モデルの結果である。

痕跡値(赤)は、津波痕跡データベースに収録されていた 116 個(**表Ⅱ.ⅲ-1**)のうち、位置が重複するデータ及びデータベース中の注釈において、"他文献による引用"と記載されているのものうち、同一の浸水高を記録する点がある場合を除いた 61 個のデータである。これらの痕跡値の位置を直線距離で最も近い汀線付近(評価点)の 50 m 計算格子点へ紐付け、最大津波水位と同じ横軸で表示した。

因11.11-5-4 分線での最大洋波水位の計算結果(実線)と張跡値(亦) 上段から(a)断層モデル F09 (大すべり右側)、(b)断層モデル F09 (大すべり中央)、(c) 断 層モデル F09 (大すべり左側)を使用し計算した結果を示している。破線は 50m メッシュ の計算領域(1 から 55)の境界を示す。

図Ⅱ.ⅲ-5-b 汀線での最大津波水位の計算結果(実線)と痕跡値(赤) 上段から(d)断層モデルF09(隣接LLR)、(e)断層モデルF09(隣接LRR)、(f)断層モデル Satake1986_E2を使用し計算した結果を示している。破線は 50m メッシュの計算領域(1 から55)の境界を示す。

図Ⅱ.ⅲ-6 50m メッシュ領域の位置図

本検討では、計算結果から得られた汀線付近(評価点)での最大津波水位と痕跡値とを 全 55 領域(図Ⅱ.ⅲ-6)で比較し、 $K - \kappa$ を求めた。この結果から、検証対象の断層モデル の 1940年神威岬地震に対する再現度を評価する。この比較で使用した痕跡値の数は重複を 除いた 61 個である。これらの痕跡値は最も近いハザード評価点に紐付けられている。ここ では、利用できる痕跡値の数が 61 個しかないため、痕跡値の位置とハザード評価点との距 離に制限を付けたり、構造物付近などの地形による条件を設けたりせず、すべての痕跡値 をハザード評価点に紐付けた。また、信頼度 A と B の痕跡値は 5 個 (**表**Ⅱ.ⅲ-1)しかな いため、信頼度によるデータの選択は行わず、すべてのデータを用いた。

表 II. iii -7 は本検討で実施した 6 つの津波予測計算結果と 61 個の痕跡値から求めた *K*-κ の値である。

断層モデル名	К	К	痕跡値の数
MLIT_F09(大すべり右側)	0.98	1.45	61
MLIT_F09(大すべり中央)	1.00	1.44	61
MLIT_F09(大すべり左側)	1.02	1.46	61
MLIT_F09(大すべり隣接 LLR)	0.99	1.48	61
MLIT_F09(大すべり隣接 LRR)	0.96	1.51	61
Satake1986_E2	2.34	1.83	61

表Ⅱ.ⅲ-7 汀線付近(評価点)での最大津波水位と痕跡値から求めた ℋ κの値

「II断層モデルの設定」で設定されたモデルを用いて、距離減衰式による地震動の計算 を行い、観測記録との比較検証を行う。まず、工学的基盤での最大加速度・最大速度を計 算するための距離減衰式は司・翠川(1999)によるもの利用した。また、表層地盤のモデ ルは、防災科学技術研究所 web サイト・地震ハザードステーション「J-SHIS」で公開され ているデータを使用した。このデータは 250m メッシュごとの微地形区分と表層 30m の平均 S 波速度(AVS30)(Wakamatsu and Matsuoka, 2013)と AVS30から藤本・翠川(2006)に より求められる最大速度増幅率からなる。そこで、距離減衰式で求めた工学的基盤最大速 度に表層地盤による速度増幅率を乗じることによって、地表面最大速度を求めた。地表面 最大速度から推定震度を求める方法については、藤本・翠川(2005)によるものを使用した。

入力データとして使用した J-SHIS公開の250mメッシュの表層地盤モデルを以下に示す。 それぞれ微地形区分(図Ⅲ-1)微地形区分コード表(表Ⅲ-1)、地表から地下 30m までの 深さの平均 S 波速度を推定した AVS30(図Ⅲ-2)、表層地盤による速度増幅率(図Ⅲ-3)で ある。

図Ⅲ-1 微地形区分(J-SHIS データ)

表Ⅲ-1 微地册	ド区分コー	ド対応表	(J-SHIS	による	,)
----------	-------	------	---------	-----	------------

コード	微地形区分
1	山地
2	山麓地
3	丘陵
4	火山地
5	火山山麓地
6	火山性丘陵
7	岩石台地
8	砂礫質台地
9	ローム台地
10	谷底低地
11	扇状地
12	自然堤防
13	後背湿地
14	旧河道
15	三角州·海岸低地
16	砂州・砂礫州
17	砂丘
18	砂州·砂丘間低地
19	干拓地
20	埋立地

図Ⅲ-2 AVS30 (J-SHIS データ)

図Ⅲ-3 表層地盤による速度増幅率

検証対象とした 1940 年神威岬地震における地震動についての被害および観測記録を以下にまとめる。宇佐美ほか(2003)によると、神威岬地震による地震の被害はほとんどなく、 被害は津波によるものであった。宇佐美・他(2013)及び日本海調査検討会報告書(2014) による神威岬地震の震度分布を図Ⅲ-4・図Ⅲ-5にそれぞれ示す。震度は最大で4であった。

図Ⅲ-4 1940年神威岬地震の震度分布図(宇佐美・他, 2013)

図Ⅲ-5 1940年神威岬地震の震度分布図(日本海調査検討会報告書, 2014)

距離減衰式の計算に用いる断層モデルは、1940年神威岬地震に対応する日本海調査検討 会報告書のモデルとして、F07断層とF09断層を用いた。以下に、距離減衰式の計算結果 についてまとめる。

工学的基盤面の最大速度(図Ⅲ-6、Ⅲ-7)では、距離に応じて減衰する様子が見られ距 離減衰式の妥当性を確認できる。また、表層地盤での最大速度(図Ⅲ-8、Ⅲ-9)、推定計 測震度(図Ⅲ-10、Ⅲ-11)において表層の地盤の増幅率の違いによって、震源から等距離 でも大きな違いが現れている。F07 断層と F09 断層の結果を比較すると、F07 断層の方が陸 域に近いものの、マグニチュードの大きさにより F09 断層の方が地震動が大きいことが分 かる。

1940年神威岬地震で観測された震度と比較すると、F07断層の結果は震度 2~4のそれぞれの範囲が図Ⅲ-4よりも狭く、特に震度 4の地点が少ないことから、実際の観測に比べると地震動が小さく計算されるモデルであることが分かる。一方、F09断層は震度 4 の範囲が図Ⅲ-4よりも若干小さいものの、震度 2,3 の範囲を概ね説明できていると言える。

図Ⅲ-6 F07 断層の工学的基盤最大速度

図Ⅲ-7 F09 断層の工学的基盤最大速度

図Ⅲ-9 F09 断層の表層地盤での最大速度

- (d) 今年度成果と今後の課題
- 1) 断層モデルの設定

【今年度成果】

- 本プロジェクトにおける断層データは先行する日本海調査検討会海底断層WGの断層 を包含し、また、同WGでは示されなかった断層のデータも含まれていることを確認した。
- 本プロジェクトの断層データから、日本海海域のうち、能登半島以西について、断層の連動の可能性を考慮した基本断層モデルを設定した。作成した断層モデルの特徴は以下のようにまとめられる。
- ・日本海調査検討会では網羅されなかった、規模の小さい断層や沿岸から離れた断層、既 往津波地震及び歴史地震の波源についても、網羅する断層モデル群を作成することがで きた。
- ・既往文献、先行研究及び調査のデータが不足する日本海海域について、断層上端深度や 断層傾斜角などを実際のデータの性格を反映して設定した断層モデルを作成した。
- ・本プロジェクトの断層データから断層モデルをグルーピングすることにより、断層の連動性を考慮したモデルを設定した。
- 3. 断層モデルの設定にあたり、パラメータスタディによって各断層パラメータのちがい が沿岸の津波波高に与える影響を評価し、もっとも影響の大きいパラメータを抽出した。
- ・沿岸の津波波高に与える影響が最も大きいパラメータは断層の位置である。
- ・断層の位置に関係するパラメータについて、海岸線に対して直交する成分の変化は影響 が小さいが、海岸線に平行な成分の違いは大きく影響することがわかった。
- ・そのほかのパラメータについて、影響がもっとも小さいのは断層上端深度である。また、
 断層傾斜角や断層下端深度については、すべり角や地形の違いに起因して、モーメント
 量が同じであっても津波波高への影響の度合いが異なる。また、すべり角は、高角な場合には津波波高への影響は小さいが、低角な場合には大きく影響することがわかった。

【今後の課題】

- 断層モデルの平均すべり量と、予測されるモーメント量をあたえるスケーリング則について、日本海調査検討会の μ 式(平均的な値)と不確実性を考慮した値の二通りを 併記したが、適切なスケーリング則の選定にはさらに検討が必要であると考えられる。
- 断層下端深度について、今回は地殻構造区分の観点から一定値としたが、地域的な特徴をより反映した値を設定する必要があると考えられる。
- 3. すべり角について、それを推定するデータが得られず日本海調査検討会のモデル断層 からパラメータを設定しているが、すべり角の設定方法には検討が必要である。
- 4.断層位置のばらつきの範囲の設定について、断層の規模に応じて設定する必要がある。 どの程度の断層に、どれだけのばらつきの範囲をあたえるのか、さらなる検討が必要で ある。

- 2) 断層モデルの検証
- ① 津波

【今年度成果】

1. 断層モデルの抽出

痕跡値の数や既往の断層モデルの文献などを参考に、検証に適している地震として 1940年神威岬地震と1833年庄内沖地震を選択した。1940年神威岬地震の再現性の検証 については、まず、日本海調査検討会による断層モデル F09 と Satake (1986)の断層モ デル E2 を使い検討した。

2. パラメータスタディ

既往のパラメータスタディ結果を参考に、本検討においても、断層モデル F09 の大す べりの位置を動かした 5 パターンにおける汀線付近での最大津波水位を計算し、痕跡値 と比較した。

3. 津波予測計算の結果と痕跡値との比較

本検討で用いた6パターンの断層モデルで実施した津波予測計算の結果から得られた 全 55 領域における汀線付近(ハザード評価点)の最大津波水位を図化した。日本海調 査検討会による断層モデル F09 の最大津波水位が Satake (1986)の断層モデル E2 より大 きくなった。その主な理由として、すべり量が断層モデル F09 より E2 のほうが小さい などが挙げられる。

4. *K*-κの算出

津波予測計算の結果と痕跡値との比較結果を *K*-κ で評価した。本検討では、汀線付近の最大津波水位と遡上域の痕跡値とを比較し *K*-κ を求めた。

Satake (1986)の文献中に示されている断層モデル E2 の *K*- *κ* と、本検討で求まる *K*- *κ* が異なる。その理由として、用いた痕跡値の数が異なることと、信頼度が異なることな どが挙げられる。

【今後の課題】

- ・今後、1833年庄内沖地震と神威岬地震に対応する日本海調査検討会の断層モデル F07 や Okamura et al. (2005)の断層モデルなどでも検証を実施する予定である。
- ・断層モデル F07 を使った検証を実施する場合も、同様に大すべりの位置を動かしたパ ラメータスタディを実施する必要があると考えられる。
- ・本検討では津波予測計算において潮位を T.P.=0m(表Ⅱ.ⅲ-6)で設定しており、1940 年神威岬地震発生時の潮位と異なる。今後、潮位の条件や痕跡値の選択などを再検討 し、再度 *K*- *κ* を求める必要があると考えられる。

② 地震動

【今年度成果】

1. 既往地震記録

神威岬地震による地震の被害はほとんどなく、被害は津波によるものであった。震度 は最大で震度4となった。

2. 断層モデルによる地震動

日本海調査検討会による断層モデル(F09、F07 断層)による地震動計算結果と 1940 年神威岬地震で観測された震度と比較すると、F07 断層の結果は震度 2~4 のそれぞれの 範囲が既往地震記録よりも狭く、特に震度 4 の地点が少ないことから、実際の観測に比 べると地震動が小さく計算されるモデルと考えられる。一方、F09 断層では、震度 4 の 範囲が既往地震記録より若干狭いものの、震度 2,3 の範囲を概ね説明できていると考え られる。

【今後の課題】

・今後、1833年庄内沖地震と神威岬地震に対応する 0kamura *et al.* (2005)の断層モデルな どでも検証を実施する予定である。 (e)引用文献

1) 相田勇(1989):天保四年の庄内沖地震による津波に関する数値実験,『続古地震-実像と虚像』(荻原尊禮編著),東京大学出版会,204-214

2) 土木学会原子力委員会津波評価部会:原子力発電所の津波評価技術(2002)

3)藤田和夫・今泉俊文・貝塚爽平・松田時彦・中田高・岡田篤正・太田陽子・宇津徳治・ 米倉伸之・吉井敏尅(1991):日本の活断層〔新編〕 分布図と資料,437pp,4 sheets,,活 断層研究会,東京大学出版会,.

4) Fukao, Y. and Furumoto, M., (1975) Mechanism of large earthquakes along the eastern margin of the Japan Sea, Tectonophysics, 26, 247-266.

5) 原子力安全規制庁(2013):基準津波及び耐津波設計方針に係る審査ガイド(案).

6) 羽鳥徳太郎・片山通子(1977):日本海沿岸における歴史津波とその波源域.東京大学 地震研究所彙報.52,49-70.

7) 樋渡康子・佐藤魂夫・今村文彦(2002):日本海沿岸に発生する地震に伴う津波の波源 と伝播-1704 年岩館地震,1793 年鯵ヶ沢地震,および 1804 年象潟地震による津波-,地 震 2, 54, 431-440.

8) 今村明恒(1913):明治五年ノ濱田地震,震災予防調査報告,77,43-77.

9) Irikura, K. and H. Miyake(2011) : Recipe for Predicting Strong Ground Motion from Crustal Earthquake Scenarios, PAGEOPH, 168, 85-104.

10) 地震調査研究推進本部:主要活断層帯の長期評価, 2005[~]2015.

http://www.jishin.go.jp/main/p_hyoka02_danso.htm

11) 内閣府(2007):日本海の津波調査業務 報告書

12) 日本海における大規模地震に関する検討会(2014):日本海における大規模地震に関す る検討会 最終報告.

http://www.mlit.go.jp/river/shinngikai_blog/daikibojishinchousa/

 日本海における大規模地震に関する検討会 海底断層ワーキンググループ(2014):日本海における大規模地震に関する検討会 海底断層ワーキンググループ 報告. http://www.mlit.go.jp/river/shinngikai_blog/daikibojishinchousa/

14) Okamura, Y., Satake, K., Ikehara, K., Takeuchi, A., and Arai, K. (2005) : Paleoseismology of deep-sea faults based on marine surveys of the northern Okushiri ridge in the Japan Sea, Jour. Geophys. Res., 110, B09105, doi:10.1029/2004JB003135.

15) Satake, K. (1986):Re-examination of the 1940 Shakotan-oki earthquake and the fault parameters of the earthquakes along the eastern margin of the Japan Sea, Phys. Earth Planet. Inter., 43, 137-147.

16) 島根県(2014):島根県地震被害想定調査報告書.

http://www.pref.shimane.lg.jp/bousai_info/bousai/bousai/bosai_shiryo/jishinhi gaisoutei_houkokusyo.html

17)徳山英一・本座栄一・木村政昭・倉本真一・芦寿一郎・岡村行信・荒戸裕之・伊藤康 人・徐垣・日野亮太・野原壮・阿部寛信・坂井真一・向山建二郎(2001):日本周辺海域中 新世最末期以降の構造発達史(CD-ROM版),海洋調査技術,13,1,1,CD-ROM,海洋調査技術学 会. 18) 宇佐美龍夫・石井 寿・今村隆正・武村雅之・松浦律子(2013):日本被害地震総覧,599, 東京大学出版会.