3.4. 相模トラフ(マグニチュード 7 級)等を対象とした長周期地震動ハザード評価の基 礎調査等

- (1) 事業の内容
- (a) 事業の題目

相模トラフ(マグニチュード 7 級)等を対象とした長周期地震動ハザード評価の基礎調 査等

(b) 担当者

所	属機関	役職	氏名
国立研究開発法人	防災科学技術研究所	研究部門長	藤原 広行
国立研究開発法人	防災科学技術研究所	主任研究員	森川 信之
国立研究開発法人	防災科学技術研究所	主任研究員	前田 宜浩
国立研究開発法人	防災科学技術研究所	契約研究員	岩城 麻子

(c) 事業の目的

関東地域における長周期地震動の評価の優先度を決定するため、マグニチュード7級の スラブ内地震や長大な活断層による長周期地震動の評価に関する基礎調査を行う。

(2) 事業の成果

(a) 事業の要約

国内のスラブ内地震による強震動記録及び既往研究等における震源インバージョン解 析・フォワード解析による国内外のスラブ内地震の震源モデルの収集

- アスペリティや強震動生成域の大きさ、すべり量、加速度震源スペクトルの短周期レベル等のパラメータの整理と既往の経験的関係式との比較
- ・上記成果を踏まえた関東地域を対象としたマグニチュード7級のスラブ内地震の長周期 地震動シミュレーション
- ・関東地域及びその周辺における活断層の複数の活動区間が同時に活動する地震について、破壊開始点位置等の不確実さを考慮した複数の震源モデルを作成と首都圏の浅部・深部統合地盤モデルに基づく地下構造モデルを用いて長周期地震動シミュレーション
- ・国府津ー松田断層帯のモデル化手法の検討

を実施し、マグニチュード7級のスラブ内地震及び長大な活断層の地震による関東平野内での長周期地震動のレベルを示した。

(b) 事業の成果

1) 相模トラフ沿いのマグニチュード7級のスラブ内地震に関する検討

スラブ内地震を対象とした強震動予測のための震源モデルの設定方法が、地震調査委員 会の強震動予測手法(「レシピ」)に 2016 年に追加されたが、主として短周期地震動を対象 としたモデル化手法となっている。そのため、本検討でははじめに、スラブ内地震を対象 とした長周期地震動を評価するための震源モデルに関する検討を行った。

(1) 震源モデルの調査

本項では、スラブ内地震のアスペリティの面積(強震動生成域の面積)の特性について 調べるために、震源位置、地震規模(モーメントマグニチュード、地震モーメント)、アス ペリティの面積などの項目を調査した。

震源モデルの収集対象の地震リストと、断層モデルの数を表 3.4-1 に示す。なお、壇・他 (2006)、笹谷・他(2006)、Iwata and Asano (2011)の対象地震の一部に震源モデルがな い場合も含まれているため、3 つの文献以外の地震も追加して、16 地震を対象に、計 27 個 の震源モデル(1 地震に複数の震源モデルがある場合を含む)を調査した。

(2) アスペリティ面積(強震動生成域の面積)の調査と分析

本項では、スラブ内地震のアスペリティの面積(強震動生成域の面積)の特性について 調べるために、震源位置、地震規模(モーメントマグニチュード、地震モーメント)、アス ペリティの面積や強震動生成域の面積などの項目を調査した。

調査対象とした地震の震央とメカニズム解を図 3.4-1 に示し、断層パラメータの調査結果 を表 3.4-2 に示す。

表 3.4・2 では、アスペリティと強震動生成域のそれぞれの項目について整理を行っている が、スラブ内地震においてアスペリティの面積と強震動生成域の面積の関係について調べ た結果を図 3.4・2 と図 3.4・3 に示す。

図 4.3-2 では、2011 年宮城県沖地震の震源モデルにおける原田・釜江(2011) によるア スペリティと、Harada et al. (2012) による強震動生成領域 *SsMGA*を比較しているが、両者 は全く同じであることがわかる。

図 4.3・3 は、染井・他(2012) による、2011 年宮城県沖地震の強震波形インバージョン 結果から得られたアスペリティの位置と、染井・他(2012) による経験的グリーン関数法 から得られた強震動生成域(SMGA)の位置を比較している図である。染井・他(2012) では、観測記録の主要動に影響を与える SMGA1 と SMGA2 の空間位置は、Asp.1、Asp.2 と概ね一致しており、SMGA3 は強震波形の主要動部分ではなく、後続動部分を説明してい るため、2011 年宮城県沖地震ではアスペリティ領域(強震動生成域)によって広帯域強震 動が生成されたとしている。

以上より、スラブ内地震においては、アスペリティと強震動生成域が同じであることが 示唆されているため、本検討ではスラブ内地震のアスペリティの面積と強震動生成域の面 積を同じだと考えて分析を行った。

地震 番号	壇・他(2006)	笹谷・他(2006)	Iwata and Asano (2011)	そのほか	震源モデ ルの数	参考文献
1	1994年北海道東方沖地震 (Mj 8.2)	1994年北海道東方沖地震 (Mj 8.2)	1994年北海道東方沖地震 (Mj 8.2)		1	Morikawa and Sasatani(2004)
2	2001年芸予地震 (Mj 6.7)	2001年芸予地震 (Mj 6.7)	2001年芸予地震 (Mj 6.7)		1	Aasano et al. (2004)
3	2003年宮城県沖地震 (Mj 7.1)	2003年宮城県沖地震 (Mj 7.1)	2003年宮城県沖地震 (Mj 7.1)		4	浅野・他 (2004) 青井・他(2003) 八木(2003) Aoi <i>et al.</i> (2005)
4	1993年釧路沖地震 (Mj 7.5)	1993年釧路沖地震 (Mj 7.5)			1	Morikawa and Sasatani(2004)
5		1997年愛知県東部地震 (Mj 5.9)			-	
6		1999年釧路支庁中南部地震 (Mj 6.4)			-	
7		1999年和歌山北部地震 (Mj 5.6)			-	
8		2000年北海道東方沖地震 (Mj 7.0)			-	
9		2001年静岡県中部 (Mj 5.3)			1	森川・笹谷(2002)
10		2001年日向灘地震 (Mj 5.8)			-	
11		2001年岩手県内陸南部地震 (Mj 6.4)			-	
12			2008年岩手県沿岸北部地震 (Mj 6.8)		2	Iwata and Asano (2011) Suzuki <i>et al</i> .(2009)
13			1949年Olympia地震 (Mw 6.8)		1	Ichinose et al. (2006)
14			1965年Seattle-Tacma地震 (Mw 6.6)		1	Ichinose et al. (2004)
15			1997年Michoacan地震 (Mw 7.1)		1	Santoyo et al. (2005)
16			1999年Oaxaca地震 (Mw 7.4)		1	Hernandez et al. (2001)
17			2001年EL Salvador地震 (Mw 7.7)		-	-
18			2001年Nisqually地震 (Mw 6.8)		1	Ichinose et al. (2004)
19			2005年Tarapaca地震 (Mw 7.8)		1	Delouis and Legrand (2007)
20				2009年駿河湾の地震 (Mj 6.5)	4	佐藤(2010) 浅野・岩田(2010) 川辺・他(2010) 倉橋・他(2009)
21				2011年宮城県沖地震 (Mj 7.2)	5	芝・野口(2012) 原田・釜江(2011) Harada et al. (2012) 染井・他(2012a) 染井・他(2012b)
22				2014年伊予灘地震 (Mj 6.2)	1	池田・他(2014)
23				1855年安政江戸地震 (Mj 7.1)	1	佐藤(2016)
					total 27	

表 3.4-1 震源モデルの収集対象の地震リスト。

図 3.4・4 に表 3.4・2 に示したスラブ内地震の地震モーメント M_0 とアスペリティ(強震動 生成域)の面積 Sa との関係を示す。図中、白丸印は国内のスラブ内地震、黒丸印は海外の スラブ内地震である。また、赤線は (3.4-1) 式で表される笹谷・他 (2006) によるスラブ 内地震の地震モーメント M_0 とアスペリティの面積 $S_{asasatani}$ との経験的関係式で、黒線は (3.4-2) 式で表される Somerville *et al.*(1999)による内陸地震の地震モーメント M_0 とアスペ リティの面積 $S_{asomerville}$ との経験的関係式である。

$S_{asasatani}[km^2] = 1.25 \times 10^{-16} \times (M_0 [N \cdot m] \times 10^7)^{2/3}$ (3.4-1)

$S_{a\text{somerville}}[\text{km}^2] = 5.00 \times 10^{-16} \times (M_0 \text{ [N} \cdot \text{m}] \times 10^7)^{2/3}$ (3.4-2)

図より、国内のスラブ内地震および海外のスラブ内地震ともに、地震モーメントとアス ペリティの面積(強震動生成域の面積)との関係が、笹谷・他(2006)によるスラブ内地 震の地震モーメントとアスペリティの面積との経験的関係式にほぼのっていることがわか る。

a) 国内の地震

図 3.4-1 アスペリティ面積(強震動生成域の面積)の調査対象とした地震の震央位置(星 印)とメカニズム解(※F-netのデータ引用)。

b) 海外の地震

図 3.4-1 アスペリティ面積(強震動生成域の面積)の調査対象とした地震の震央位置(星印)とメカニズム解(※Global-GMTのデータ引用)(つづき)。

表 3.4-2	アスペリティ面積	(強震動生成域の面積)	の調査対象とした地震リス	スト。
---------	----------	-------------	--------------	-----

♦日	本の:	地震	1														
			地震名	發生日	気象庁	F-ne	et	チーメント			論文	※ 赤字 は、	M_0 -Sa or S_s	MGA図におい 磁電動	いてプロット	した	
地畫	震号	地域 (ブレート)	(*展課モリル の 収集対象地 業)	10 11 14	マグニ チュード	地震 モーメント	震源 位置	マグニ チュード	地震 モーメント	震源 位置	短周期 レベル	リティの 応力降下量	ティの 面積	1.000 生成領域の 応力降下量	生成領域の 面積	参考文献	備考
			59C)	年月日	M_j	M_0 (Nm)	深さ (km)	M_{W}	M_0 (Nm)	深さ (km)	A (N · m/s ²)	⊿σ _a (MPa)	S _a (km ²)	⊿σ _{smGa} (MPa)	S _{SMGA} (km ²)		
1	1-1	太平洋	北海道 東方沖"	1994/10/4	8.2		-	8.2	2.6E+21 (KK) 3.0E+21 (H)	56.0	1.7E+21 (MS)	-		SMGA1:82 SMGA2: 82 SMGA3: 382 SMGA4: 300 SMGA5: 137 (MS)	SMGA1: 400 SMGA2: 256 SMGA3: 144 SMGA4: 144 SMGA5: 256 total: 1200 (MS)	笹谷・他(2006)	KK:Kikuchi&Kanamori (1995) HHarvard CMT MS:Morikawa&Sasatani (2004) I2:Ikeda et al.(2004) β=4.6
	1-2							8.3	3.50E+21	64.0	-	28.7	2640.0	-	-	Iwata and Asano (2011)	Shao et al.(2006)
	2-1	太平洋	釽路沖"	1993/1/15	7.5	-	-	7.7	3.3E+20(T) 2.7E+20(H)	95.0	4.2E+20 (MS) 2.0E+20 (I1)	-		モデルA SMGA1: 109 SMGA2: 381 SMGA3: 163 モデルB SMGA1: 82 SMGA1: 82 SMGA2: 190 SMGA3: 109	モデルA SMGA1: 51.8 SMGA2: 72.0 SMGA3: 34.6 total: 158.6 モデルB SMGA1: 92 SMGA2: 144 SMGA3: 69 total: 305	笹谷・他(2006)	MS-Morikawa and Sasatani (2004) HHarvard CMT 日湾田(2002) 工能谷・他(2006) <i>β=</i> 4.6
2	2-2							7.5	2.3.E+20	103.0	-	-	-	-	-	菊地(2003)	β=4.6
	2-3							-	-	100.6	-	-	-	-	-	野津(2003)	-
	2-4							7.6	3.3.E+20	107.0	-		-	-	-	Takeo et al. (1993)	-
	3-1	太平洋	宫城県沖*	2011/4/7	7.2	4.74.E+19	65.73	7.1	4.74E+19	65.9	-	-	-	-	-	芝・野口(2012)	β=4.46
	3-2							7.1	5.54E+19	49.0	-		-	-	-	山中(2011)	-
	3-3							7.17	7.2.E+19	56.1	-		-	-	-	Ohta et al. (2011)	logM ₀ =1.5M _W +9.1
3	3-4							-	-	66.0	1.10.E+20	asp1:70.6 asp2:70.6	asp1: 10.2*10.2 = 104.04 asp2: 10.2*10.2 = 104.04		-	原田・釜江(2011)	A=4πβ ² ⊿σ _a (S _a /π) ^{1/2} β=3.9 震源位置 山中(2011)参照
	3-5							-	-	-	-	-	-	SMGA1:71 SMGA2:71	SMGA1: 10.2*10.2= 104.04 SMGA2:	Harada et al. (2012)	β=3.9
	3-6							-	-	-	8.01E+19	-	-	SMGA1: 23.7 SMGA2: 70.8 SMGA3: 70.8	SMGA1: 35.6 SMGA2: 80.1 SMGA3: 35.6	染井・宮腰(2012) 建築学会	$A=4\pi\beta^{2}\Delta\sigma_{a}(S_{a}/\pi)^{1/2}$ $\beta=3.82$
	3-7							7.1	5.24E+19	66.0	-	-	-	-	-	染井・宮腰(2012) 地震学会	-
	3-8							7.1	4.74E+19	68.0	2.17E+20		-	-	-	佐藤 (2013)	モデルなし
	4-1	太平洋	宫城県神"	2003/5/26	7.1	3.49E+19	70.73	7.0	3.49.E+19	72.0	1.1E+20(S) 1.4+E20(TS)	-	-	SMGA1: 105 SMGA2: 105 SMGA3: 105 (A2)	SMGA1: 3*3=9 SMGA2: 4*4=16 SMGA3: 6*6=36 total: 61.0 (A2)	笹谷・他(2006)	β=3.98 SSatoh(2004) TS:笹谷•他(2006) A2:浅野•他(2004)
	4-2							7.0	3.80.E+19	-	-	-	-	-	-	引間 (2003)	-
	4-2							7.0	4.0.E+19	52.0	-		-	-	-	国土地理院(2003)	logM ₀ =1.5M _W +9.1
4	4-3							7.0	3.8E+19	75.0	-	-	-	-	-	山中・菊地(2003)	-
	4-4							7.2	7.6E+19	72.0			-			青井・他(2003)	2枚断層
	4-5							7.1	5.62.E+19	68.0	-		-	-	-	Okada and Hasegawa(2003)	logM ₀ =1.5M _W +9.1
	4-6							6.9	3.00.E+19	70.0	-	-	-	-	-	八木 (2003)	logM ₀ =1.5M _W +9.1
	4-7					_		7.0	6.20E+19	72.0	-	49.9	108.0	-	-	Iwata and Asano (2011)	Aoi et al.(2005)
	4-8							7.0	3.49E+19	-	1.20.E+20	-	-	-	-	佐藤(2013)	-
	5-1	太平洋	岩手県 内陸沿岸 北部 [*]	2008/7/24	6.8	1.72.E+19	108.08	6.9	2.82E+19	115.0	3.51.E+19		23.9	96	-	Iwata and Asano (2011)	$A=4\pi\beta^{2}\Delta\sigma_{a}(S_{a}/\pi)^{1/2}$ $\beta=4.5$
5	5-2							6.9	2.82E+19	115.0	-		24	-	-	Suzuki et al.(2009)	-
	5-3							6.8	1.72E+19	-	8.96E+19		-	-	-	佐藤(2013)	

表 3.4-2 アスペリティ面積(強震動生成域の面積)の調査対象とした地震リスト。

(続き)

♦月	本の	地震	. <u> </u>														
			地震名	70 /t- D	気象庁	F-ne	at 🗌	- 4VL	1	T	論文	※ <mark>赤字</mark> は、/	M ₀ -Sa or S _{Si}	MGA図におい	いてプロット *****	した	I
地道	震号	地域 (プレート)	(*震源モデル の 収集対象地	発生日	マグニ チュード	地震 モーメント	震源 位置	モーメント マグニ チュード	地震 モーメント	震源 位置	短周期 レベル	アスへリティの応力降下量	アスヘッ ティの 面積	一個限期 生成領域の 応力降下量	(預限期) 生成領域の 面積	参考文献	備考
			震)	年月日	M_{j}	M_0 (Nm)	深さ (km)	M_{W}	M_0 (Nm)	深さ (km)	A (N - m/s ²)	$\Delta \sigma_a$	S a (2m ²)	$\Delta \sigma_{SMGR}$ (MPa)	S SMGA		
6	6-1	大平洋	北海道	2000/1/28	7.0	1 21.E+19	55,64	6.8	2 00E+18	59.0	5.2E+19	62.4(TS)	56.3 (TS)		(A) -	笹谷・他(2006)	H : Harvard
	0-1	A+++	東方沖" 岩手県	2000 - 2.	1.0	1.21.2011	30.04	0.0	2.002.10	33.0	(TS) 3.9E+19	261(A1) asp1:87 asp2:116	24.6(A1) asp1:5.8 asp2:8.6		-	B.T. Down	TS:笹谷・他(2006) MF:森川・藤原(2002)
7	7-1	太平洋	內陸 南部 [*]	2001/12/2	6.4	5.34.E+18	121.50	6.4	5.6E+18(H)	122.0	(MF)	asp3:116 (MF)	asp3:5.8 (MF)	-	-	笹谷・他(2006)	HHarvard CMT
	7-2							6.4	5.34E+18		4.21E+19	-	-	-	-	佐藤(2013)	モデルなし
8	8-1	太平洋	釧路支庁 中南部 [*]	1999/5/13	6.4	1.72.E+18	103.57	6.2	2.4E+18(H)	109.0	2.8E+19(TS) 2.3E19(I1)	asp1:73 asp1:73 (TS)	asp1:3.2 asp1:4.9 (TS)	-	-	笹谷・他(2006)	H-Harvard CMT I2池田(2002)
		フィリピン海	芸予 [*]	2001/3/24	6.7	1.51.E+19	51.38	6.7 (YK)	1.4E+19 (YK)	50 (YK)	6.2E+19 (M)	asp1:47 asp2:41 (A1)	asp1:33.1 asp2:24.8 (A1)	SMGA1: 47.5 SMGA2: 42.8 (M)	SMGA1: 31.7 SMGA2: 42.3 (M)		Al:Asano et al. (2003) M:奈川 + 他(2002), YK:Yagi and Kikuchi (2001)
9	9-1							6.8 (TS)	2.1E+19 (KH)	46.46 (TS)	6.0E+19 (I2)					笹谷・他(2006)	TS:笹谷・他(2006) KH:Kakehi (2004), 12:池田・他(2004) 笹谷・他では6.0E+20 だが泡田・他より 6.0E+19とした
								6.8	1.88E+19	46.0		81.0	24.3	-			Kakehi(2004)
	9-2							7.0	3.36E+19	46.0		135.0	24.2	135.0	-	Iwata and Asano (2011)	関口・岩田 (2002)
	9-3							6.8	1.51.E+19	46.5	-	-	-	-	-	Asano et al. (2004)	2つのアスペリティ
	10-1	フィリピン海	駿河湾"	2009/8/11	6.5	2.25.E+18	23.32	6.2	2.25.E+18	21.6	3.71E+19	-	-	SMGA1: 75.1 SMGA2: 75.1	SMGA1: 3*2=6 SMGA2: 4*3=12 total: 18	佐藤(2010)	Q=30y ^{0.54}
	10-2							-	-	23.0	-	-	-	SMGA1: 35.7 SMGA2: 27.5	SMGA1: 3.6*3.6=13 SMGA2: 4.8*4.8=23	浅野・岩田(2010)	2枚の断層面
10	10-3					1		-	-	23.0	-	-	-	-	-	野津(2010)	2枚の断層面 3つのアスペリティ
	10-4							6.4	4.8.E+18	-	-			-	-	上野・他(2009)	2枚の断層面
	10-5							-	-	17.1	-	asp1:15 asp2:15	asp1: 5.0*5.0=25 asp2: 5.0*5.0=25 tota1:50.0	-	-	川辺・他(2010)	-
	10-6							-	-	23.0	-	asp1:16.7 asp2:17.6	asp1:16.2 asp2:45.0	-	-	倉橋・他 (2009)	2枚の断層面
11	11-1	フィリピン海	日向灘	2001/4/25	5.8	4.00.E+17	41.54	5.7	4.00E+17	39.3 (I2)	6.8E+18(I2)	-	-	19 (A1)	2.2*3.4 =7.5(A1)	笹谷・他(2006)	HHarvard CMT A1:Asano et al.(2003) I2:Ikeda(2004)
12	12-1	フィリピン海	和歌山県 北部 [*]	1999/8/21	5.6	2.79.E+17	69.58	5.6	3.1E+17 (H)	66.0	2.9E+18(I2)	314 (A1)	1.4 (A1)	-	-	笹谷・他(2006)	H:Harvard CMT A1:Asano et al.(2003) I2:Ikeda(2004)
13	13-1	フィリピン海	愛知県 東部*	1997/3/16	5.9	2.97.E+17	39.12	5.6	3.3E+17(H)	39.0	1.2E+18(I2)	32(A1)	2.7(A1)		-	笹谷・他(2006)	H:Harvard CMT A1:Asano et al.(2003) I2:Ikeda(2004)
14	14-1	フィリピン海	静岡県 中部*	2001/4/3	5.1	8.17.E+16	33.20	5.4	1.58.E+17	30.11 (H) 35 (F)	9.12.E+18	-	-	34	3.2	森川,笹谷(2002) 防災科学技術研究所 (2001)	β=4.6 HHinet NIED 走向.頼新,すべり角: 311.7,74.8,170.2 FFressia 走向.頼新,オベリ角: 341.56,62 2枚の断層面 logMg=1.5Mw+9.1
15	15-1	フィリピン海	伊予灘"	2014/3/14	6.2	3.54.E+18	78.04	6.3	3.54E+18	-	-		5.6*4.2= 23.52	-	-	池田・他(2014)	β =3.5km/s log M_0 =1.5 M_W +9.1
		フィリピン海	安政 江戸 地震	1886	-			7.0	3.98.E+19		6.46E+19			SMGA1:60.0 SMGA2:60.0	SMGA1:40.5 SMGA2:20.25		Mw7.1のみ検討対象
16	16-1							7.1	5.62.E+19	-	6.79E+19			SMGA1:54.2 SMGA2:54.2	SMGA1:40.5 SMGA2:40.5	佐藤(2016)	
								7.2	7.94.E+19		6.66E+19			SMGA1:44.6 SMGA2:44.6	SMGA1:81 SMGA2:40.5		

表 3.4-2 アスペリティ面積(強震動生成域の面積)の調査対象とした地震リスト。

(続き)

_

			116-000-21		気象庁	F-ne	et .				論文	※赤字は、/	M_0 -Sa or S_{S}	MGA図におい	いてブロット	した	
均谱	2貫 5号	地域 (ブレート)	地震名 (*震源モデル の 収集対象地	発生日	マグニ チュード	地震 モーメント	震源 位置	モーメント マグニ チュード	地震 モーメント	震源 位置	短周期 レベル	アスペ リティの 応力降下量	アスペリ ティの 面積	強震動 生成領域の 応力降下量	強震動 生成領域の 面積	参考文献	備考
			殿)	年月日	M_{j}	M_0 (Nm)	深さ (km)	M_{W}	M_0 (Nm)	深さ (km)	A (N · m/s ²)	$\Delta \sigma_a$ (MPa)	S	$\Delta \sigma_{SMGA}$ (MPa)	S SMGA (km ²)		
	17-1	Cascadia	Olympia	1949/4/13	-	-	-	7.1	5.62E+19	54.0	-	-	-	-	-	Seno and Yoshida (2004)	-
	17-2				-			6.8	1.91E+19	60.0	5.60E+19	65.0	36.0	-	-	Iwata and Asano (2011)	$A = 4\pi \beta^2 A \sigma_s (S_s / \pi)^{1/2}$ $\downarrow : 0,$ $\beta = 4.5 \succeq \cup \uparrow_c.$
17	17-3				-			6.8	1.91E+19	60.0	-	-	36.0	-	-	Ichinose et al. (2006).	-
	17-4				-			-	1.50E+19	54.0	-	-	-	-	-	Baker and Langston (1987)	-
18	18-1	Cascadia	Seattle-Tacma	1965/4/29	-	-	-	6.6	9.43E+18	60.0	3.96E+19	52.1	28.0	-	-	Iwata and Asano (2011)	$\begin{array}{c} A = 4\pi\beta^{2} \varDelta \sigma_{s} \left(S_{s} / \pi \right)^{1/2} \\ \downarrow \ ^{\eta} , \\ \beta = 4.5 \succeq \ ^{h} _{- \circ} . \end{array}$
10	18-2				-			6.6	9.43E+18	60.0			28.0			Ichinose et al. (2004)	-
	19-1	Mexico	Michoacan	1997/1/11	-	6.06+19	40	7.1	5.62E+19	40	-	-	-		-	Seno and Yoshida (2004)	-
	19-2				-			7.1	6.06E+19	40	7.24E+19	-	-	-	-	Garcia et al. (2004)	$A=(2\pi f_c)^2 M_0\downarrow^{-1})$
19	19-3				-			7.0	4.54E+19	35	2.59E+19	10.1	320.0	-	-	Iwata and Asano (2011)	$A = 4\pi\beta^2 A \sigma_a (S_a/\pi)^{1/2}$ より、β=4.5とした。
	19-4				-			7.1	4.90E+19	35	-	-	300.0	-	-	Santoyo et al. (2005)	-
	20-1	Mexico	Oaxaca	1999/9/30	-	1.72E+20	46.8	7.4	1.58E+20	47	-	-	-	-	-	Seno and Yoshida (2004)	-
20	20-2				-			7.4	1.72E+20	47	1.89E+20	-	-	-	-	Garcia et al. (2004)	$A = (2\pi f_c)^2 M_0$
20	20-3				-			7.5	1.79E+20	40	3.80E+19	9.8	731	-	-	Iwata and Asano (2011)	$A = 4\pi\beta^2 \Delta \sigma_x (S_y/\pi)^{1/2}$ より、 $\beta=4.5 \ge した。$
	20-4							-	1.8E+20	39.7	-	-	-	-	-	Hernandez et al. (2001)	-
21	21-1	ココス プレート	El Salvador* エルサド バドル	2001/1/13	-	4.57.E+20	56.00	7.7	4.57E+20	54.0	9.83.E+19	25.3	733	-	-	Iwata and Asano (2011)	Vallee et al. (2003) A= $4\pi\beta^2 \Delta \sigma_a (S_a/\pi)^{1/2}$ β=4.5と仮定
	21-2							7.7	4.47.E+20	56.0	-					Seno and Yoshida(2004)	logM ₀ =1.5M _W +9.1
	22-1	Cascadia	Nisqually	2001/2/28	-	1.76E+20	46.8	6.8	2.00E+19	47	-	-	-	-	-	Seno and Yoshida (2004)	-
22	22-2				-			6.8	1.66E+19	56	3.80E+19	40.4	43	-	-	Iwata and Asano (2011)	$\begin{split} A &= 4\pi\beta^2 \varDelta \sigma_{\pi} (S_s/\pi)^{1/2} \\ \downarrow \ \emptyset \ , \beta &= 4.5 \succeq \ U \nearrow , \end{split}$
	22-3				-			6.8	1.66E+19	56	-	-	45	-	-	Ichinose et al. (2004)	-
	22-4				-			6.67	1.11E+19	60	-	-	-	-	-	Ichinose et al. (2006).	-
23	23-1	ナスカ プレート	Chile Tarapaca* チリ (タラパカ) 地震	2005/6/13	-	5.32.E+20	94.50	7.7	3.92E+20	-	1.71E+20	59.7	400	-	-	Iwata and Asano (2011)	Delouts and Legrand (2007) $A=4\pi\beta^2 riangle \sigma_a (S_a/\pi)^{1/2}$ β=4.5と仮定
	23-2				-			7.8	5.47E+20	108.0	-	-	-		-	Delous and Legrand(2007)	-

a) 原田・釜江(2011、左図)と Harada et al. (2012、右図)の震源モデルの比較

b) 原田・釜江(2011)によるアスペリティの面積と、Harada *et al.* (2012) による強震動生 成域の面積との比較

図 3.4-2 2011 年宮城県沖地震におけるアスペリティの面積 *Sa* (原田・釜江, 2011)と強 震動生成領域の面積 *SsMcA* (Harada *et al.*, 2012)との関係。

図 3.4-3 2011 年宮城県沖地震におけるアスペリティの位置と強震動生成領域の位置との 関係(染井・他, 2012)。

図 3.4-4 スラブ内地震の地震モーメント M_0 とアスペリティの面積 S_a (強震動生成領域の 面積 S_{SMGA}) との関係。

(3) 地震動シミュレーション対象とする地震および断層モデルの設定

フィリピン海プレート内のマグニチュード7程度の地震として、1855年安政江戸地震タ イプのスラブ内地震を想定する。

モーメントマグニチュードは宇佐美(2003)より 7.1 とし、その値から地震モーメント を算出した。それを与条件として、地震調査研究推進本部地震調査委員会(2016)の「震 源断層を特定した地震の強震動予測手法(「レシピ」)」に従って断層パラメータを設定する。 地震モーメントから短周期レベルを求める際は笹谷・他(2006)による経験式から得られ る値の 0.5 倍とした(新井・他、2015)。

設定した断層パラメータを表 3.4-3 に示す。これらのパラメータ、1855 年安政江戸地震 に対する佐藤(2016)によるパラメータ、および「レシピ」の地震モーメントと短周期レ ベルの関係を図 3.4-5 に示す。「レシピ」の(31)式は、笹谷・他(2006)による経験式であ る。また、地震モーメントと断層面積の関係を図 3.4-6 に示す。

なお、佐藤(2016)の経験的グリーン関数法に用いられた要素地震の震源パラメータを 求めるために記録の補正に用いられた Q 値は、Q=107f^{0.51}に近い値である。

首都直下地震モデル検討会(2013)を参考に設定した巨視的断層面の位置を図 3.4-7 に、 断層モデルを図 3.4-8 に示す。

参考として、モーメントマグニチュードを 7.3 とした場合の断層パラメータを表 3.4・4 に 示す。地震モーメントは表 3.4・3 の 2 倍となっているが、短周期レベルは 1.3 倍程度にとど まっている。

	断層パラメータ	記号	設定方法	設定値
	断層位置 (断層原点)	-	設定	N35.6° E139.8°
	走向	θ	首都直下地震モデル検討会(2013)	0 °
	傾斜角	δ	首都直下地震モデル検討会(2013)	90 °
	ずれの種類		首都直下地震モデル検討会(2013)	横ずれ型
	断層長さ	L	L=S/W	29 km
	断層幅	W	W=S ^{0.5}	29 km
	断層面積	S	$S = (7\pi^2 \beta^2 M_0) / (4A (S_a/S)^{0.5})$	860 km ²
	断層上端深さ	-	設定	40.0 km
	破壞開始点	-	設定	アスペリティ下端
	破壊伝播形式	-	設定	同心円状
	地震モーメント	M_0	$M_0 = 10^{(1.5Mw+9.1)}$	5.62×10 ¹⁹ Nm
モー	メントマグニチュード	$M_{\rm w}$	設定(基本値)	7.1
	剛性率	μ	$\mu = \rho \beta^2$	4.80×10 ¹⁰ N/m ²
	密度	ρ	設定	3 g/cm ³
	S波速度	V_S	設定	4 km/s
	平均すべり量	D	$D = M_0/(\mu S)$	1.36 m
	平均応力降下量	$\Delta \sigma$	$\Delta \sigma = (7\pi^{1.5}/16) \ (M_0/S^{1.5})$	5.43 MPa
	破壊伝播速度	V _r	$V_r = 0.72\beta$ (Geller, 1976)	2.88 km/s
	短周期レベル	Α	笹谷・他(2006)×0.5	4.06×10 ¹⁹ Nm/s ²
	アスペリティ面積比	S_a/S	$S_a/S = 16(9.84 \times 1.25 \times 10^7)^2/(49\pi^4\beta^4)$	0.20
ア	地震モーメント	M_{0a}	$M_{0a} = \mu S_a D_a$	2.23×10 ¹⁹ Nm
スペ	面積	S _a	$S_a = (S_a / S)S$	170 km ²
リテ	平均すべり量	D_a	$D_a = \gamma_D D, \ \gamma_D = 2.0$	2.73 m
, T	応力降下量	$\Delta \sigma_a$	$\Delta \sigma_a = A/(4\beta^2 (\pi S_a)^{0.5})$	27.4 MPa
	地震モーメント	M_{0b}	$M_{0b} = M_0 - M_{0a}$	3.40×10 ¹⁹ Nm
背景	面積	S _b	S _b =S-S _a	689 km ²
領 城	平均すべり量	D_{b}	$D_b = M_{0b} / (\mu S_b)$	1.03 m
-24	実効応力	σ_b	$\sigma_b = (D_b/W_b)(\pi^{0.5}/D_a) r \Sigma(r_i/r)^3 \Delta \sigma_a , r = (S_a/\pi)^{0.5}$	4.6 MPa
	, <i>Q</i> 値	Q	設定	80f ^{0.7}
	f_{max}	f_{max}	佐藤・他(1994)	13.5 Hz

表 3.4-3 断層パラメータ(与条件 Mw=7.1)

図 3.4-5 安政江戸地震および「レシピ」(地震調査委員会, 2016b)の地震モーメント(M₀) と短周期レベル(A)の関係。

図 3.4-6 安政江戸地震および「レシピ」(地震調査委員会, 2016b)の地震モーメント(M₀) と断層面積(S)の関係。

図 3.4-8 想定安政江戸地震の断層モデル図

	断層パラメータ	記号	設定方法	設定値
	断層位置 (断層原点)	-	設定	N35.6° E139.8°
	走向	θ	首都直下地震モデル検討会(2013)	0 °
	傾斜角	δ	首都直下地震モデル検討会(2013)	90 °
	ずれの種類		首都直下地震モデル検討会(2013)	横ずれ型
	断層長さ	L	L=S/W	37 km
	断層幅	W	W=S ^{0.5}	37 km
	断層面積	S	$S = (7\pi^2 \beta^2 M_0) / (4A (S_a/S)^{0.5})$	1363 km ²
	断層上端深さ	-	設定	40.0 km
	破壞開始点	-	設定	アスペリティ下端
	破壊伝播形式	-	設定	同心円状
	地震モーメント	M_0	$M_0 = 10^{(1.5Mw+9.1)}$	1.12×10 ²⁰ Nm
モー	メントマグニチュード	$M_{\rm w}$	設定(基本値)	7.3
	剛性率	μ	$\mu = \rho \beta^2$	4.80×10 ¹⁰ N/m ²
	密度	ρ	設定	3 g/cm ³
	S波速度	V_S	設定	4 km/s
	平均すべり量	D	$D = M_0/(\mu S)$	1.72 m
	平均応力降下量	$\Delta \sigma$	$\Delta \sigma = (7\pi^{1.5}/16) \ (M_0/S^{1.5})$	5.43 MPa
	破壊伝播速度	V_r	$V_r = 0.72\beta$ (Geller, 1976)	2.88 km/s
	短周期レベル	Α	笹谷・他(2006)×0.5	5.11×10 ¹⁹ Nm/s ²
	アスペリティ面積比	S_a/S	$S_{a}/S = 16(9.84 \times 1.25 \times 10^{7})^{2}/(49\pi^{4}\beta^{4})$	0.20
T	地震モーメント	M_{0a}	$M_{0a} = \mu S_a D_a$	4.45×10 ¹⁹ Nm
スペ	面積	S _a	$S_a = (S_a / S)S$	270 km ²
リテ	平均すべり量	D_a	$D_a=\gamma_D D, \ \gamma_D=2.0$	3.43 m
, T	応力降下量	$\Delta \sigma_a$	$\Delta \sigma_a = A/(4\beta^2 (\pi S_a)^{0.5})$	27.4 MPa
	地震モーメント	M_{0b}	$M_{0b} = M_0 - M_{0a}$	6.77×10 ¹⁹ Nm
背景	面積	S _b	S _b =S-S _a	1093 km ²
領城	平均すべり量	D_{b}	$D_b = M_{0b} / (\mu S_b)$	1.29 m
	実効応力	σ_b	$\sigma_b = (D_b/W_b)(\pi^{0.5}/D_a) r \Sigma(r_i/r)^3 \Delta \sigma_a , r = (S_a/\pi)^{0.5}$	4.6 MPa
	<i>Q</i> 値	Q	設定	80f ^{0.7}
	f_{max}	f_{max}	佐藤・他(1994)	13.5 Hz

表 3.4-4 断層パラメータ(与条件 Mw=7.3)

(4) 地震動評価の対象とする位置

地震動評価の対象位置は、神奈川県庁、東京都庁、埼玉県庁および千葉県庁の位置にお ける工学的基盤上面を地表とした解放基盤とする。

対象の位置図を図 3.4-9 に示す。

想定安政江戸地震による地震動は、評価対象地点までの水平距離に対して比較的震源が 深いことも考慮して、統計的グリーン関数法を用いて試算する。このとき、長周期地震動 の計算精度を担保するため、ラディエーション係数は評価地点ごとに計算される理論値を 用いる。評価地点の地震基盤から工学的基盤への1次元波動論による増幅を考慮する。こ の地下構造モデルは、相模トラフ巨大地震の長周期地震動評価(地震調査委員会、2016) で用いられた、表 3.4-5 と表 3.4-6 の地盤構造と物性値である。

対象位置	神奈川県庁	東京都庁	埼玉県庁	千葉県庁
層番号		層下端	深さ (m)	
1	192	207	138	298
2	199	422	390	837
3	1012	1022	1232	1541
4	2794	2585	2448	3031

表 3.4-5 計算対象位置の深層地盤各層の下端深さ。

表 3.4-6 深層地盤の各層の物性値

層番号	P波速度 (m/s)	S波速度 (m/s)	密度 (g/cm ³)	Q(1Hz) ^{*1}	備考
1	1800	500	1.90	50	工学的基盤
2	2100	700	2.00	70	
3	2400	900	2.05	90	
4	3200	1500	2.25	150	
5	5500	3200	2.65	320	地震基盤

*1 振動数依存のQ値の1Hzの値: $Q(f)=Q(1Hz) \cdot f$

図 3.4-9 計算対象の位置図

(5) 試算結果

想定安政江戸地震による地震動を、次の2ケースについて試算した。

ケース1 破壊開始点を図 3.4-9 の開始点-1 とする。

ケース2 破壊開始点を図 3.4-9 の開始点-2 とする。

解放基盤とした工学的基盤上面において試算した、ケース 1 の地震動の速度波形を図 3.4-10、ケース 2 の地震動の速度波形を図 3.4-11 にそれぞれ示す。減衰定数 5%の擬似速度 応答スペクトルを図 3.4-12 に示す。ここで、応答スペクトルおよび図 3.4-13 で地震動予測 式と比較する最大値は、NS・EW 成分の時刻歴(応答波形)におけるオービットの最大値 である。

次に、工学的基盤上面(Vs500m/s)で試算した最大加速度、最大速度を Morikawa and Fujiwara (2013)の地震動予測式(GMPE)と比較して図 3.4-13 に示す。また、擬似速度応答スペクトルの比較(地震動予測式は距離が 45km の場合)を図 3.4-14 に、擬似速度応答スペクトルの周期 2 秒と 5 秒における距離減衰における比較を図 3.4-15 に示す。なお、断層パラメータの設定において短周期レベルを笹谷・他(2006)による経験式から得られる値の 0.5 倍としたため、図 3.4-13~図 5.4-15 の Morikawa and Fujiwara (2013)の地震動 予測式による値は、森川・他(2015)を参考に 0.5 倍とした。

試算地震動の最大加速度と最大速度を地震動予測式による値と比較すると、試算地震動 は地震動予測式を 0.5 倍した平均値と良く対応している。また、擬似速度応答スペクトルも 比較的に良く対応している。

ここで、試算結果と1855年安政江戸地震との対応関係を検討するために、試算地震動に 基づく地表の震度を求めた。

地表の震度は、「レシピ」の 3.2.2 の ii) ハイブリッド合成法等により工学的基盤上の時 刻歴波形が求められている場合、に従って算出した。すなわち、まず工学的基盤で試算し た3成分地震動から気象庁の方法による計測震度を求める。次に、J-SHISの表層地盤デー タによる表層 30m の平均 S 波速度 AVS30 を用いて工学的基盤から地表への増幅率を求め る。最後に両者から地表の震度を求める。

地表震度の算出結果を表 3.4-7 に示す。歴史地震データに基づく 1855 年安政江戸地震の 震度分布(首都直下地震モデル検討会、2013)を図 5.4-16 に示す。図 3.4-16 から類推され る震度と表 3.4-7 を比較すると、試算地震動に基づく震度は、やや小さいと思われる。

上記の震度の検討から、本検討の計算結果はやや過小評価の可能性もあるものの、周期2 秒程度以上の長周期地震動としては、減衰定数5%の速度応答スペクトルで10~20cm/s 程 度となっている。なお、マグニチュード7クラスの地震として最大の7.3まで考慮した場合、 地震モーメントが2倍となることから、長周期地震動の振幅も本検討で示した結果2倍程 度の20~40cm/s程度となりうる。

a) NS 成分の速度波形

b) EW 成分の速度波形

図 3.4-10 想定安政江戸地震のケース1による地震動の速度波形。

a) NS 成分の速度波形

b) EW 成分の速度波形

図 3.4-11 想定安政江戸地震のケース2による地震動の速度波形。

安政江戸地震(Mw7.1);ケース2

図 3.4-12 想定安政江戸地震のケース1による地震動の擬似速度応答スペクトル。

図 3.4-13 想定安政江戸地震の地震動最大値と Morikawa and Fujiwara (2013)による地震 動予測式との比較。

図 3.4-14 想定安政江戸地震の地震動 (ケース 1) と Morikawa and Fujiwara (2013)によ る地震動予測式の擬似速度応答スペクトルの比較。

図 3.4-15 想定安政江戸地震の地震動と Morikawa and Fujiwara (2013)による地震動予測 式の擬似速度応答スペクトルの距離減衰関係の比較。

対象位置	神奈川県庁	東京都庁	埼玉県庁	千葉県庁
ケース1	5.0	5.2	5.4	5.4
ケース2	5.0	5.2	5.3	5.3

表 3.4-7 想定安政江戸地震の試算による地表震度。

図 3.4-16 首都直下地震モデル検討会(2013)に示された 1855 年安政江戸地震の震度分布: 宇佐美(1994)による震度分布。

- 2) 関東地域の活断層を対象とした検討
- (1)対象とする地震と震源モデルの設定

関東平野内において大きな長周期地震動が生じる可能性がある活断層で発生する地震として、長さが 50km を超える規模が大きい以下の地震を本検討の対象とした。

- F14601: 長野盆地西縁断層帯飯山−千曲区間(単独の活動)
- F14611: 長野盆地西縁断層帯全体が同時に活動
- F14701: 深谷断層帯(単独の活動)
- F14711: 深谷断層帯および綾瀬川断層鴻巣−伊奈区間が同時に活動
- F14721: 深谷断層帯および綾瀬川断層の全体が同時に活動
- F15311: 糸魚川-静岡構造線断層帯の北部区間および中北部区間が同時に活動
- F15312: 糸魚川−静岡構造線断層帯の中北部区間および中南部区間が同時に活動
- F15313: 糸魚川−静岡構造線断層帯の中南部区間および南部区間が同時に活動
- F15321: 糸魚川−静岡構造線断層帯の北部区間~中南部区間が同時に活動
- F15322: 糸魚川−静岡構造線断層帯の中北部区間~南部区間が同時に活動
- F15331: 糸魚川−静岡構造線断層帯全体が同時に活動

上記の地震のうち、長野盆地西縁断層帯飯山-千曲区間(単独の活動)及び深谷断層帯 (単独の活動)については全国地震動予測地図 2016 年版(地震調査委員会、2016a)にお ける震源モデルをそのまま用いる。それ以外の複数区間が同時に活動する地震については、 全国地震動予測地図 2016 年版で設定されている各区間の震源断層モデルをそのまま組み合 わせて設定した。震源パラメータについては、「レシピ」(地震調査委員会、2016b)に従っ た。なお、糸魚川-静岡構造線断層帯の中北部区間および中南部区間が同時に活動する地 震については、両区間の震源断層面積の和から設定される地震モーメントが、それぞれの 区間単独で活動する地震の地震モーメントの和よりも小さくなったことから、ここではそ れぞれの区間単独で活動する地震の地震モーメントを足し合わせた「カスケード的」なモ デルとした。複数区間が同時に活動する地震について、設定した震源パラメータおよび震 源モデルを表 3.4-8~表 3.4-16、図 3.4-17~図 3.4-25 にそれぞれ示す。

巨視的震源パラメータ		設定方法		ケース1~5	i
断層長さ L	km	-		-	
地震規模 M		-		-	
地震モーメント M ₀	Nm	$M_0 = (S/4.24 \times 10^{11})^2 \times 10^{-7}$		1.10E+20	
モーメントマグニチュード M _w		$(\log M_0 - 9.1) / 1.5$		7.3	
断層原点位置(地中)	°N	長期評価に基づく	37.017		36.57
	°E	長期評価に基づく	138.429		138.066
走向 0	0	長期評価に基づく	213.9	213.9	208.4
$傾斜角 \delta$	0	長期評価に基づく	145	145	135
すべり角ん		「角西側隆起の逆断層」	90	90	90
	km	地震基盤探さと2km の深い方	4	4	4
断層セアル区間長さ L _{model_seg}	km	長期評価および「レシビ」に基づく	31	31	18
) 断層モデル区間幅 W model_seg	km	長期評価および「レシビ」に基づく	18	18	16
断層モテル区間面積 S _{model_seg}	km ²	$S_{\text{model}_{seg}} = L_{\text{model}} \times W_{\text{model}}$	558	558	288
断層モデル面積 S _{model}	km ²	$S_{\text{model}} = \sum S_{\text{model_seg}}$		1404	
平均すべり量 D	m	$D = M_0 / (\mu \cdot S_{\text{model}})$		2.5	
平均静的応力降下量 $\Delta\sigma$	MPa	$\Delta \sigma = 7/16 \times M_0 / (S_{\text{model}} / \pi)^{1.5}$		5.1	
微視的震源パラメータ			飯山-	-千曲	麻績
短周期レベル A	Nm/s ²	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$		2.54E+19	
アスペリティ総面積 <i>S</i> a	km ²	$S_{a} = \pi r^{2}, r = 7\pi/4 \times M_{0}/(A \cdot R) \times \beta^{2}$		530.5	
アスペリティの実効応力 $\sigma_{ m a}$	MPa	$\sigma_{\rm a} = \Delta \sigma_{\rm a} = 7/16 \times M_0/(r^2 \cdot R)$		13.4	
区間地震モーメント M _{0seg}	Nm	単独活動時の地震モーメントに比例して配分	5.13E+19	5.13E+19	7.10E+18
区間平均すべり量 D _{seg}	m	$D_{\text{seg}} = M_{0\text{seg}} / (\mu \cdot S_{\text{seg}})$	2.9	2.9	0.8
,,全面積 S _{a seg}	km ²	単位区間の面積に比例して配分	210.8	210.8	108.8
リーア デア平均すべり量 Daseg	m	$D_{\rm a seg} = \gamma_{\rm D} \cdot D_{\rm seg}, \gamma_{\rm D} = 2.0$	5.9	5.9	1.6
ィス 実効応力 $\sigma_{a seg}$	MPa	$\sigma_{\rm a seg} = \sigma_{\rm a}$	13.4	13.4	13.4
ペ 地震モーメント $M_{0a seg}$	Nm	$M_{0a \text{ seg}} = \mu \cdot D_{a \text{ seg}} \cdot S_{a \text{ seg}}$	3.87E+19	3.87E+19	5.36E+18
第 面積 S _{al}	km ²	$S_{a1} = 2/3 \times S_{a \text{ seg}} (\pm \hbar \text{ th } S_{a1} = S_{a \text{ seg}})$	140.6	140.6	108.8
リ 1 すべり量 D _{al}	m	$D_{a1} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_{a \text{ seq}}$	6.5	6.5	1.6
テア 実効応力 σ_{a1}	MPa	$\sigma_{a1} = \sigma_{aseg}$	13.4	13.4	13.4
「ス計算用アスペリティ長さ	km	2kmメッシュサイズ	14	14	10
^ 計算用アスペリティ幅	km	2kmメッシュサイズ	10	10	10
第 面積 S _{a2}	km ²	$S_{a2} = 1/3 \times S_{a_{seg}}$	70.3	70.3	_
リ 2 すべり量 D _{a2}	m	$D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_{a \text{ seg}}$	4.6	4.6	—
テア 実効応力 σ_{a2}	MPa	$\sigma_{a2} = \sigma_{aseg}$	13.4	13.4	_
「ス」計算用アスペリティ長さ	km	2kmメッシュサイズ	8	8	_
^ 計算用アスペリティ幅	km	2kmメッシュサイズ	8	8	_
背 面積 S _{b_seg}	km ²	$S_{b_seg} = S_{model_seg} - S_{a_seg}$	347.2	347.2	179.2
景 すべり量 D _{b seg}	m	$D_{\rm b seg} = M_{\rm 0b seg} / (\mu \cdot S_{\rm b seg})$	1.2	1.2	0.3
領 実効応力 $\sigma_{b seg}$	MPa	$\sigma_{\rm b seg} = (D_{\rm b seg}/W_{\rm b seg}) \times (\pi^{1/2}/D_{\rm a seg}) \times (r \cdot \Sigma \gamma_{\rm i}^3 \cdot \sigma_{\rm seg})$	1.6	1.6	1.6
域 地震モーメント M _{0b seg}	Nm	$M_{0b} \operatorname{seg} = M_{0seg} - M_{0a} \operatorname{seg}$	1.25E+19	1.25E+19	1.73E+18

表 3.4-8 長野盆地西縁断層帯全体が同時に活動する地震の震源パラメータ。

巨視的震源パラメータ		設定方法		ケース1~5	i			
断層長さ <i>L</i>	km			_				
地震規模 M		—		-				
地震モーメント M ₀	Nm	$M_0 = (S/4.24 \times 10^{11})^2 \times 10^{-7}$		1.60E+20				
モーメントマグニチュード M _w		$(\log M_0 - 9.1) / 1.5$	7.4					
断層原点位置(地中)	°N	長期評価に基づく	36.366		36.057			
	°E	長期評価に基づく	138.821		139.444			
	0	長期評価に基づく	122.1	122.1	130.2			
$ (傾斜 f \delta) $	0	長期評価に基づく	60	60	50			
すべり角ん	°	「南西側隆起の運断層」	90	90	90			
	km	地震基盤深さと2km の深い万	5	5	5			
断磨モデル区.間長さ L _{model_seg}	km	長期評価および「レシビ」に基づく	36	36	20			
阿層モデル区間幅 W model_seg	km	長期評価および「レシビ」に基づく	18	18	20			
断層モデル区間面積 S _{model_seg}	km ²	$S_{\text{model}_{seg}} = L_{\text{model}} \times W_{\text{model}}$	648	648	400			
断層モデル面積 S _{model}	km ²	$S_{\text{model}} = \sum S_{\text{model_seg}}$		1696				
平均すべり量 D	m	$D = M_0 / (\mu \cdot S_{\text{model}})$		3.0				
平均静的応力降下量 $\Delta\sigma$	MPa	$\Delta\sigma = 7/16 \times M_0 / (S_{\text{model}} / \pi)^{1.5}$						
微視的震源パラメータ			深	谷	鴻巣-伊奈			
短周期レベル A	Nm/s ²	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$		2.88E+19				
アスペリティ総面積 S_{a}	km ²	$S_{\mathbf{a}} = \pi r^2, r = 7\pi/4 \times M_0/(A \cdot R) \times \beta^2$		726.9				
アスペリティの実効応力 $\sigma_{ m a}$	MPa	$\sigma_{a} = \Delta \sigma_{a} = 7/16 \times M_{0}/(r^{2} \cdot R)$		13.0				
区間地震モーメント M _{0seg}	Nm	単独活動時の地震モーメントに比例して配分	7.40E+19	7.40E+19	2.23E+19			
区間平均すべり量 D _{seg}	m	$D_{\text{seg}} = M_{0\text{seg}} / (\mu \cdot S_{\text{seg}})$	3.7	3.7	1.8			
₁ 全 面積 S _{a_seg}	km ²	単位区間の面積に比例して配分	277.7	277.7	171.4			
$ - \mathcal{F} $ 平均すべり量 $D_{a \text{ seg}}$	m	$D_{\rm a \ seg} = \gamma_{\rm D} \cdot D_{\rm seg}, \ \gamma_{\rm D} = 2.0$	7.3	7.3	3.6			
(γz) 実効応力 $\sigma_{a seg}$	MPa	$\sigma_{\rm a seg} = \sigma_{\rm a}$	13.0	13.0	13.0			
べ 地震モーメント M _{0a seg}	Nm	$M_{0a seg} = \mu \cdot D_{a seg} \cdot S_{a seg}$	6.34E+19	6.34E+19	1.91E+19			
ペ第 <mark>面積 S_{al}</mark>	km ²	$S_{al} = 2/3 \times S_{a_seg}$ ($\pm \hbar t S_{al} = S_{a_seg}$)	185.1	185.1	171.4			
リ1 すべり量 D _{al}	m	$D_{a1} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_{a \text{ seg}}$	8.1	8.1	3.6			
アア 実効応力 σ_{a1}	MPa	$\sigma_{\rm al} = \sigma_{\rm a \ seg}$	13.0	13.0	13.0			
「 ^ 計算用面積	km×km	2kmメッシュサイズ	16 × 12	16 × 12	14 × 12			
ペ第 <mark>面積 S_{a2}</mark>	km ²	$S_{a2} = 1/3 \times S_{a_seg}$	92.6	92.6	—			
リ 2 すべり量 D _{a2}	m	$D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_{a \text{ seg}}$	5.7	5.7	—			
「 アア」実効応力 σ _{a2}	MPa	$\sigma_{a2} = \sigma_{a scg}$	13.0	13.0	—			
1 4 計算用面積	$km \times km$	2kmメッシュサイズ	12 × 8	12 × 8	_			
背 面積 S _{b_seg}	km ²	$S_{b_seg} = S_{model_seg} - S_{a_seg}$	370.3	370.3	228.6			
景 すべり量 D _{b seg}	m	$D_{b \text{ scg}} = M_{0b \text{ scg}} / (\mu \cdot S_{b \text{ scg}})$	0.9	0.9	0.4			
領 実効応力 $\sigma_{b seg}$	MPa	$\sigma_{b \text{ seg}} = (D_{b \text{ seg}} / W_{b \text{ seg}}) \times (\pi^{1/2} / D_{a \text{ seg}}) \times (r \cdot \Sigma \gamma_i^3 \cdot \sigma_a)$	1.1	1.1	0.8			
¹ 戦 地震モーメント M _{0b seg}	Nm	$M_{0b seg} = M_{0seg} - M_{0a seg}$	1.06E+19	1.06E+19	3.18E+18			

表 3.4-9 深谷断層帯および綾瀬川断層鴻巣-伊奈区間が同時に活動する地震の震源パラメータ。

巨視	的震源パラメータ		設定方法									
断層	長さ <i>L</i>	km	—		-	-						
地震	規模 M				-	-						
地震	モーメント M ₀	Nm	$M_0 = S \times 10^{17}$		2.10	E+20						
モー	メントマグニチュード M _w		$(\log M_0 - 9.1) / 1.5$	7.5								
断層	原点位置(地中)	°N	長期評価に基づく	36.366		36.057	35.946					
		°E	長期評価に基づく	138.821		139.444	139.607					
走向	θ	0	長期評価に基づく	122.1	122.1	130.2	140.6					
傾斜	角 δ	0	長期評価に基づく	60	60	50	50					
すべ	り角 え	0	「南西側隆起の逆断層」	90	90	90	90					
上端	深さ D _{top}	km	地震基盤深さと2km の深い方	5	5	5	5					
断層	モデル区間長さ L model_seg	km	長期評価および「レシピ」に基づく	36	36	20	20					
断層	モデル区間幅 W _{model_seg}	km	長期評価および「レシピ」に基づく	18	18	20	20					
断層	モデル区間面積 S _{model seg}	km ²	$S_{\text{model seg}} = L_{\text{model}} \times W_{\text{model}}$	648	648	400	400					
断層	モデル面積 S _{model}	km ²	$S_{\text{model}} = \sum S_{\text{model seg}}$		20	96						
平均	すべり量 <i>D</i>	m	$D = M_0 / (\mu \cdot S_{\text{model}})$		3	.2						
平均	静的応力降下量 $\Delta\sigma$	MPa	Fujii and Matsu'ura (2000)									
微視	的震源パラメータ			深谷幽	后带	鴻巣-伊奈	伊奈-川口					
短周	期レベル A	Nm/s ²	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$ (参考値)		3.15	E+19						
アス	ペリティ総面積 <i>S</i> a	km ²	$S_{a} = 0.22 \cdot S_{model}$		46	1.1						
アス	ペリティの実効応力 $\sigma_{ m a}$	MPa	$\sigma_{\rm a} = \Delta \sigma_{\rm a} = S_{\rm a} / S \times \Delta \sigma$		14	l.1						
区間	地震モーメント M _{0seg}	Nm	単独活動時の地震モーメントに比例して分配	9.02E+19	9.02E+19	1.46E+19	1.46E+19					
区間	平均すべり量 D _{seg}	m	$D_{\text{seg}} = M_{0\text{seg}} / (\mu \cdot S_{\text{seg}})$	4.5	4.5	1.2	1.2					
<u>n</u> 全	面積 S _{a_scg}	km ²	単位区間の面積に比例して配分	142.6	142.6	88.0	88.0					
ッア	平均すべり量 D _{a seg}	m	$D_{\rm a seg} = \gamma_{\rm D} \cdot D_{\rm seg}, \gamma_{\rm D} = 2.0$	8.9	8.9	2.3	2.3					
イス	実効応力 $\sigma_{a seg}$	MPa	$\sigma_{\rm a seg} = \sigma_{\rm a}$	14.1	14.1	14.1	14.1					
~	地震モーメント M _{0a seg}	Nm	$M_{0a \text{ seg}} = \mu \cdot D_{a \text{ seg}} \cdot S_{a \text{ seg}}$	3.97E+19	3.97E+19	6.42E+18	6.42E+18					
ペ第	面積 S _{al}	km ²	$S_{a1} = 2/3 \times S_{a_seg}$ (または $S_{a1} = S_{a_seg}$)	95.0	95.0	88.0	88.0					
<u>ሀ</u> 1	すべり量 <i>D</i> a1	m	$D_{\rm al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_{\rm a \ seg}$	9.9	9.9	2.3	2.3					
テア	実効応力 σ_{al}	MPa	$\sigma_{\rm al} = \sigma_{\rm a seg}$	14.1	14.1	14.1	14.1					
1 X	計算用面積	km×km	2kmメッシュサイズ	10 × 10	10 × 10	10 × 8	10 × 8					
ペ第	而積 S _{a2}	km ²	$S_{a2} = 1/3 \times S_{a_seg}$	47.5	47.5	-	—					
リ 2	すべり量 D _{a2}	m	$D_{a2} = (\gamma_2 / \Sigma \gamma_1^3) \cdot D_{a \text{ seg}}$	7.0	7.0	-	_					
テア	実効応力 σ_{a2}	MPa	$\sigma_{a2} = \sigma_{a seg}$	14.1	14.1	-	—					
1 X	計算用面積	km×km	2kmメッシュサイズ	8 × 6	8 × 6	—	_					
背	面積 S _{b seg}	km ²	$S_{b \text{ seg}} = S_{\text{model seg}} - S_{a \text{ seg}}$	505.4	505.4	312.0	312.0					
景	すべり量 D b seg	m	$D_{b \text{ seg}} = M_{0b \text{ seg}} / (\mu \cdot S_{b \text{ seg}})$	3.2	3.2	0.8	0.8					
領	実効応力 $\sigma_{ m b seg}$	MPa	$\sigma_{\rm b \ seg} = (D_{\rm b \ seg} / W_{\rm b \ seg}) \times (\pi^{1/2} / D_{\rm a \ seg}) \times (r \cdot \Sigma \gamma_{\rm i}^3 \cdot \sigma_{\rm seg})$	2.5	2.5	2.0	2.0					
琙	地震モーメント M _{Ob seg}	Nm	$M_{0b seg} = M_{0seg} - M_{0a seg}$	5.05E+19	5.05E+19	8.17E+18	8.17E+18					

表 3.4-10 深谷断層帯および綾瀬川断層全体が同時に活動する地震の震源パラメータ。

巨視的震源パラメータ		設定方法	ケース1~12													
断層長さ L	km	-					-									
地震規模 M		-					_									
地震モーメント M ₀	Nm	$M_0 = (S/4.24 \times 10^{11})^2 \times 10^{-7}$					9.34E+19									
モーメントマグニチュード M _w		$(\log M_0 - 9.1) / 1.5$					7.2									
断層原点位置(地中)	°N	長期評価に基づく	36.355	36.364	36.533	36.537	36.651	36.645	35.983	36.023	36.069					
	°E	長期評価に基づく	137.957	137.994	137.893	137.932	137.898	137.937	138.162	138.091	138.059					
走向の	0	長期評価に基づく	343.7	343.7	2	2.0	18.9	18.9	304.6	330.9	339.2					
傾斜角 δ	0	長期評価に基づく	30	60	30	60	30	60	70	70	70					
すべり角え	. °	「南西側隆起の運跡層」	90	90	90	90	90	90	0	0	0					
	km	地震基盤探さと2km の深い方	2	4	2	4	2	4	2	2	2					
町唐モデル区間長さ L _{model_seg}	km	長期評価および「レシビ」に基づく	(2	20)	(1	2)	(1	6)	(8)	(6)	(34)					
断層モアル区間幅 W model_seg	km	長期評価および「レシビ」に基づく		8	1	8	1	8	10	10	10					
断層モデル区間面積 S _{model seg}	km ²	$S_{\text{model_seg}} = L_{\text{model}} \times W_{\text{model}}$	35	1.3	19	9.3	28	0.0	74.3	52.5	338.2					
断層モデル面積 S _{model}	km ²	$S_{\text{model}} = \Sigma S_{\text{model seg}}$					1295.6									
平均すべり量 D	m	$D = M_0 / (\mu \cdot S_{\text{model}})$	2.3													
平均静的応力降下量 $\Delta\sigma$	MPa	$\Delta \sigma = 7/16 \times M_0 / (S_{\text{model}} / \pi)^{1.5}$	4.9													
微視的震源パラメータ					北	部				屮北部	屮北部					
短周期レベル A	Nm/s ²	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$ (参考値)					2.40E+19									
アスペリティ総面積 S _a	km ²	$S_a = \pi r^2$, $r = 7\pi/4 \times M_0/(A \cdot R) \times \beta^2$	464.0													
アスペリティの実効応力 σ_{a}	MPa	$\sigma_a = \Delta \sigma_a = 7/16 \times M_0/(r^2 \cdot R)$	13.6													
区間地震モーメント M _{0seg}	Nm	単独活動時の地震モーメントに比例して分離			5.15	E+19				4.19E+19						
		面積の1.5乗に比例して分配	2.41	E+19	1.03	E+19	1.71E+19		3.71E+18	2.20E+18	3.60E+19					
区間平均すべり量 D _{seg}	m	$D_{\text{seg}} = M_{0\text{seg}} / (\mu \cdot S_{\text{seg}})$	2	.2	1.	.7	2.0		1.6	1.3	3.4					
,全面積 $S_{a scg}$	km ²	単位区間の面積に比例して配分	12	5.8	71.4		100.3		26.6	18.8	121.1					
リア デア 平均すべり量 D _{a seg}	m	$D_{\text{a seg}} = \gamma_{\text{D}} \cdot D_{\text{seg}}, \gamma_{\text{D}} = 2.0$	4	.4	3.	3	3	.9	3.2	2.7	6.8					
$^{\prime}$ ス 実効応力 $\sigma_{a seg}$	MPa	$\sigma_{a seg} = \sigma_{a}$	1	3.6	13	.6	1:	3.6	13.6	13.6	13.6					
ペ 地震モーメント $M_{0a seg}$	Nm	$M_{0a \text{ seg}} = \mu \cdot D_{a \text{ seg}} \cdot S_{a \text{ seg}}$	1.72	E+19	7.36	E+18	1.23	E+19	2.65E+18	1.58E+18	2.58E+19					
ペ第 面積 S _{al}	km ²	$S_{a1} = 2/3 \times S_{a \text{ seg}}$ (または $S_{a1} = S_{a \text{ seg}}$)	_	125.8	Ι	71.4	_	100.3	26.6	18.8	80.8					
リ 1 すべり量 D _{al}	m	$D_{a1} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_{a \text{ sce}}$	_	4.4	-	3.3	_	3.9	3.2	2.7	7.6					
テア 実効応力 σ_{a1}	MPa	$\sigma_{a1} = \sigma_{a sce}$	-	13.6	-	13.6	_	13.6	13.6	13.6	13.6					
「ス」計算用面積	km×km	2kmメッシュサイズ	_	12 × 10	_	8 × 8	_	10 × 10	4 × 6	4 × 4	10 × 8					
ペ 第 面積 S _{a2}	km ²	$S_{a2} = 1/3 \times S_{a sca}$	_	-	-	-	_	_	_	_	40.4					
リ 2 すべり量 D _{a2}	m	$D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_{a} seq$	_	_	_	_	_	_	_	_	5.3					
テア 実効応力 σ_{∞}	MPa	$\sigma_{a2} = \sigma_{a,sca}$	_	_	_	_	_	_	_	_	13.6					
イス計算用面積	km×km	2kmメッシュサイズ	—		_	_		_	_	_	6 × 6					
書 面積 Sb seg	km ²	$S_{b \text{ seg}} = S_{\text{model seg}} - S_{a \text{ seg}}$	22	5.5	12	7.9	179.7		47.7	33.7	217.1					
景 すべり量 D _{b seg}	m	$D_{\rm b scg} = M_{\rm 0b scg} / (\mu \cdot S_{\rm b scg})$	1	.0	0.	7	0.9		0.7	0.6	1.5					
領 実効応力 σ _{b see}	MPa	$\sigma_{\rm b} = (D_{\rm b} \sec W_{\rm b} \sec) \times (\pi^{1/2}/D_{\rm a} \sec) \times (r \cdot \Sigma \gamma_{\rm i}^3 \cdot \sigma)$	1	.7	1.	.3	1	.7	1.2	1.2	2.4					
域 地震モーメント M _{ob seg}	Nm	$M_{0b seg} = M_{0seg} - M_{0a seg}$	6.83	E+18	2.92	E+18	4.86	E+18	1.05E+18	6.25E+17	1.02E+19					

表 3.4-11 糸魚川静岡構造線断層帯北部区間+中北部区間が同時に活動する地震の震源パラメータ。

巨視的震源パラメータ		設定方法	ケース1~8									
断層長さ L	km	—			-	-						
地震規模 M		—			-	-						
地震モーメント M ₀	Nm	単独活動の合算値			6.14	E+19						
モーメントマグニチュード M _w		$(\log M_0 - 9.1) / 1.5$			7.	.1						
断層原点位置(地中)	°N	長期評価に基づく	35.983	36.023	36.069	36.079	36.056	36.007				
	°E	長期評価に基づく	138.162	138.091	138.059	138.049	138.106	138.131				
	0	長期評価に基づく	304.6	330.9	339.2	116	157.7	141.2				
傾斜角 δ	0	長期評価に基づく	70	70	70	70	70	70				
すべり知え		「南西側隆起の逆断層」	0	0	0	0	0	0				
上姉休さ <i>D</i> top 断房をごす区間日をす	km	地震基盤保さと 2km の保い力 長期証券によって、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	2	2	2	2	2	2				
断層モデル区間反さ L _{model_seg}	km	長期評価および「レシビ」に基づく	(8)	(6)	(34)	(6)	(6)	24				
断層モデル区間幅 W model_seg	km	長期評価および「レシビ」に基づく	10	10	10	14	14	14				
間層モデル区間面積 S _{model_seg}	km ²	$S_{\text{model_seg}} = L_{\text{model}} \times W_{\text{model}}$	74.3	52.5	338.2	67.4	67.4	336.0				
断層モデル面積 S _{model}	km ²	$S_{\text{model}} = \sum S_{\text{model seg}}$			93	5.8						
平均すべり量 D	m	$D = M_0 / (\mu \cdot S_{\text{model}})$			2.	.1						
平均静的応力降下量 $\Delta\sigma$	MPa	$\Delta \sigma = 7/16 \times M_0 / (S_{\text{model}} / \pi)^{1.5}$	5.2									
微視的震源パラメータ				中北部			中南部					
短周期レベル A	Nm/s ²	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$ (参考値)			2.09	E+19						
アスペリティ総面積 S_a	km ²	$S_a = \pi r^2, r = 7\pi/4 \times M_0/(A \cdot R) \times \beta^2$			36	7.2						
アスペリティの実効応力 σ_{a}	MPa	$\sigma_a = \Delta \sigma_a = 7/16 \times M_0/(r^2 \cdot R)$			13	3.3						
区間地震モーメント M _{0seg}	Nm	単独活動時の地震モーメントに比例して分離		3.97E+19		2.17E+19						
~		面積の1.5乗に比例して分配	3.51E+18	2.09E+18	3.41E+19	1.65E+18	1.65E+18	1.84E+19				
区間平均すべり量 D _{seg}	m	$D_{\text{seg}} = M_{0\text{seg}} / (\mu \cdot S_{\text{seg}})$	1.5	1.3	3.2	0.8	0.8	1.8				
,1 全面積 $S_{a,scg}$	km ²	単位区間の面積に比例して配分	29.2	20.6	132.7	26.4	26.4	131.9				
^リ ア 平均すべり量 D _{a seg}	m	$D_{a \text{ scg}} = \gamma_{\text{D}} \cdot D_{\text{ scg}}, \gamma_{\text{D}} = 2.0$	3.0	2.5	6.5	1.6	1.6	3.5				
r ス実効応力 $\sigma_{a sce}$	MPa	$\sigma_{a sce} = \sigma_{a}$	13.3	13.3	13.3	13.3	13.3	13.3				
^ペ 地震モーメント $M_{0a seg}$	Nm	$M_{0a \text{ seg}} = \mu \cdot D_{a \text{ seg}} \cdot S_{a \text{ seg}}$	2.76E+18	1.64E+18	2.68E+19	1.29E+18	1.29E+18	1.44E+19				
ペ第 面積 S _{a1}	km ²	$S_{a1} = 2/3 \times S_{a seg}$ (または $S_{a1} = S_{a seg}$)	29.2	20.6	88.5	26.4	26.4	131.9				
リ 1 すべり量 D _{al}	m	$D_{a1} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_{a \text{ see}}$	3.0	2.5	7.2	1.6	1.6	3.5				
「フア」実効応力 σ_{a1}	MPa	$\sigma_{\rm al} = \sigma_{\rm a seg}$	13.3	13.3	13.3	13.3	13.3	13.3				
1ス 計算用面積	$km \times km$	2kmメッシュサイズ	4 × 6	4 × 6	10 × 8	4 × 6	4 × 6	14 × 10				
ペ第 面積 S _{a2}	km ²	$S_{a2} = 1/3 \times S_{a_{a}seg}$	—		44.2	_		_				
リ 2 すべり量 D _{a2}	m	$D_{a2} = (\gamma_2 / \Sigma \gamma_1^3) \cdot D_{a \text{ sep}}$	-	_	5.1	_	_	-				
テア 実効応力 σ_n	MPa	$\sigma_{a^{\gamma}} = \sigma_{a sec}$	_	_	13.3	_	_	_				
「ス」計算用面積	$km \times km$	2kmメッシュサイズ	_	_	8 × 6	_	_	_				
_皆 面積S _{b_seg}	km ²	$S_{b_{seg}} = S_{model_{seg}} - S_{a_{seg}}$	45.1	31.9	205.5	40.9	40.9	204.1				
景 すべり量 D _{b seg}	m	$D_{\rm b seg} = M_{\rm 0b seg} / (\mu \cdot S_{\rm b seg})$	0.5	0.5	1.1	0.3	0.3	0.6				
領 実効応力 $\sigma_{b seg}$	MPa	$\sigma_{\rm b \ see} = (D_{\rm b \ see}/W_{\rm b \ see}) \times (\pi^{1/2}/D_{\rm a \ see}) \times (r \cdot \Sigma \gamma_{\rm i}^3 \cdot \sigma_{\rm see})$	0.9	0.9	2.0	0.7	0.7	1.7				
域 地震モーメント M _{0b seg}	Nm	$M_{0b \text{ seg}} = M_{0seg} - M_{0a \text{ seg}}$	7.55E+17	4.49E+17	7.34E+18	3.55E+17	3.55E+17	3.96E+18				

表 3.4-12 糸魚川静岡構造線断層帯中北部区間+中南部区間が同時に活動する地震の震源パラメータ。

巨視的震源パラメータ		設定方法	ケース1~6									
断層長さ L	km	-			-	_						
地震規模 M		-			-	_						
地震モーメント M ₀	Nm	$M_0 = (S/4.24 \times 10^{11})^2 \times 10^{-7}$			1.00	E+20						
モーメントマグニチュード M _w		$(\log M_0 - 9.1) / 1.5$	7.3									
断層原点位置(地中)	°N	長期評価に基づく	36.079	36.056	36.007	35.828	35.755	35.551				
	°E	長期評価に基づく	138.049	138.106	138.131	138.260	138.343	138.415				
	0	長期評価に基づく	116	157.7	141.2	137.5	164.0	205.1				
傾斜角 δ	°	長期評価に基づく	70	70	70	45	45	45				
すべり角え	1	「휝四側隆起の更断層」	0	0	0	90	90	90				
上姉休さ <i>D</i> top	km	地震基盤保さと 2km の保い方	2	2	2	4	4	4				
断層モデル区間長さ L _{model seg}	km	長期評価および「レシビ」に基つく	(6)	(6)	24	(12)	(26)	(16)				
断層モデル区間幅 W model_seg	km	長期評価および「レシビ」に基づく	14	14	14	22	22	22				
断層モテル区間面積 S _{model_seg}	km ²	$S_{\text{model_seg}} = L_{\text{model}} \times W_{\text{model}}$	67.4	67.4	336.0	203.0	413.9	254.9				
断層モデル面積 S _{model}	km ²	$S_{\text{model}} = \sum S_{\text{model_seg}}$			134	12.4						
平均すべり量 D	m	$D = M_0 / (\mu \cdot S_{\text{model}})$			2	.4						
平均静的応力降下量 $\Delta\sigma$	MPa	$\sigma = 7/16 \times M_0 / (S_{\text{model}} / \pi)^{1.5}$ 5.0										
微視的震源パラメータ			山南部 南部									
短周期レベル A	Nm/s ²	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$ (参考値)			2.46	E+19						
アスペリティ総面積 S _a	km ²	$S_a = \pi r^2$, $r = 7\pi/4 \times M_0/(A \cdot R) \times \beta^2$			49	2.3						
アスペリティの実効応力 σ_{a}	MPa	$\sigma_a = \Delta \sigma_a = 7/16 \times M_0/(r^2 \cdot R)$			13	3.5						
区間地震モーメント M _{0seg} Nm		単独活動時の地震モーメントに比例して分配		3.26E+19			6.77E+19					
		面積の1.5乗に比例して分配	2.48E+18	2.48E+18	2.76E+19	1.27E+19	3.70E+19	1.79E+19				
区間平均すべり量 D _{seg}	m	$D_{\text{seg}} = M_{0\text{seg}} / (\mu \cdot S_{\text{seg}})$	1.2	1.2	2.6	2.0	2.9	2.2				
11全面積 Sa_seg	km ²	単位区間の面積に比例して配分	24.7	24.7	123.2	74.4	151.8	93.5				
ッア 平均すべり量 D _{a seg}	m	$D_{\rm a seg} = \gamma_{\rm D} \cdot D_{\rm seg}, \gamma_{\rm D} = 2.0$	2.4	2.4	5.3	4.0	5.7	4.5				
ィス 実効応力 $\sigma_{a seg}$	MPa	$\sigma_{\rm a seg} = \sigma_{\rm a}$	13.5	13.5	13.5	13.5	13.5	13.5				
[~] 地震モーメント M _{0a seg}	Nm	$M_{0a \text{ seg}} = \mu \cdot D_{a \text{ seg}} \cdot S_{a \text{ seg}}$	1.82E+18	1.82E+18	2.03E+19	9.33E+18	2.72E+19	1.31E+19				
ペ第 面積 S _{al}	km ²	$S_{a1} = 2/3 \times S_{a seg}$ ($\pm \hbar i \pm S_{a1} = S_{a seg}$)	24.7	24.7	123.2	74.4	151.8	93.5				
リ 1 すべり量 Dat	m	$D_{\rm al} = (\gamma_1 / \Sigma \gamma_1^3) \cdot D_{\rm a seg}$	2.4	2.4	5.3	4.0	5.7	4.5				
テア 実効応力 σ_{al}	MPa	$\sigma_{\rm al} = \sigma_{\rm a seg}$	13.5	13.5	13.5	13.5	13.5	13.5				
「オス」計算用面積	$km \times km$	2kmメッシュサイズ	4 × 6	4 × 6	12 × 10	6 × 12	12 × 12	8 × 12				
ペ第 面積 Sa2	km ²	$S_{a2} = 1/3 \times S_{a seg}$		-	-	-	-	_				
リ 2 すべり量 D _{a2}	m	$D_{a2} = (\gamma_2 / \Sigma \gamma_1^3) \cdot D_{a \text{ seg}}$	_	_	_	_	_	_				
テア 実効応力 σ_{a2}	MPa	$\sigma_{a2} = \sigma_{a}_{seg}$	_	_	_	-	_	_				
<u>^ ス</u> 計算用面積	km×km	2kmメッシュサイズ		_		_	_					
背 面積 S _{b_seg}	km ²	$S_{b_seg} = S_{model_seg} - S_{a_seg}$	42.7	42.7	212.8	128.5	262.1	161.4				
景 すべり量 D _{b scg}	m	$D_{b \text{ seg}} = M_{0b \text{ seg}} / (\mu \cdot S_{b \text{ seg}})$	0.5	0.5	1.1	0.8	1.2	0.9				
[領] 実効応力 $\sigma_{\rm b seg}$	MPa	$\sigma_{\rm b\ seg} = (D_{\rm b\ seg}/W_{\rm b\ seg}) \times (\pi^{1/2}/D_{\rm a\ seg}) \times (r \cdot \Sigma \gamma_{\rm i}^3 \cdot \sigma_{\rm seg})$	0.8	0.8	2.0	0.8	1.6	1.0				
域 地震モーメント M _{ob seg}	Nm	$M_{0b seg} = M_{0seg} - M_{0a seg}$	6.61E+17	6.61E+17	7.36E+18	3.39E+18	9.87E+18	4.77E+18				

表 3.4-13 糸魚川静岡構造線断層帯中南部区間+南部区間が同時に活動する地震の震源パラメータ。

設定方法						ケース	K1~12						
_						-	_						
- 11 2						-	_						
$M_0 = (S/4.24 \times 10^{17})^2 \times 10^{17}$						1.74	E+20						
$(\log M_0 - 9.1) / 1.5$	00.055			00.507	00.054	/	.4						
反期評価に基つく ド地運転に其べく	36.355	36.364	36.533	36.537	36.651	36.645	35.983	36.023	36.069	36.079	36.056	36.007	
長期評価に基づく	3437	343 7	137.693	20	137.090	137.937	304.6	330.9	339.2	136.049	150.100	130.131	
長期評価に基づく	30	60	30	60	30	60	70	70	70	70	70	70	
「南西側隆起の逆断層」	90	90	90	90	90	90	0	0	0	0	0	0	
地震基盤深さと2km の深い方	2	4	2	4	2	4	2	2	2	2	2	2	
長期評価および「レシピ」に基づく	(2	0)	(1	2)	(1	6)	(8)	(6)	(34)	(6)	(6)	24	
長期評価および「レシピ」に基づく	1	18		8	1	8	10	10	10	14	14	14	
$S_{\text{model_seg}} = L_{\text{model}} \times W_{\text{model}}$	35	1.3	19	9.3	28	0.0	74.3	52.5	338.2	67.4	67.4	336.0	
$S_{\text{model}} = \sum S_{\text{model}_\text{seg}}$						176	36.3						
$D = M_0/(\mu \cdot S_{\text{model}})$						3	.1						
$\Delta \sigma = 7/16 \times M_0 / (S_{\text{model}} / \pi)^{1.5}$	5.7												
				中南部									
$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$ (参考值)	2.96E+19												
$S_{a} = \pi r^{2}, r = 7\pi/4 \times M_{0}/(A \cdot R) \times \beta^{2}$	777.8												
$\sigma_{\rm a} = \Delta \sigma_{\rm a} = 7/16 \times M_0 / (r^2 \cdot R)$						12	2.9						
単独活動時の地震モーメントに比例して分野			7.68	E+19				6.26E+19			3.42E+19		
面積の1.5乗に比例して分配	3.59	E+19	1.53E+19 2.56E+19			5.53E+18	3.29E+18	5.37E+19	2.60E+18	2.60E+18	2.90E+19		
$D_{\text{seg}} = M_{0\text{seg}} / (\mu \cdot S_{\text{seg}})$	3	3	2	.5	2	.9	2.4	2.0	5.1	1.2	1.2	2.8	
単位区間の面積に比例して配分	15	4.7	87	7.8	12	3.3	32.7	23.1	148.9	29.7	29.7	148.0	
$D_{\rm a seg} = \gamma_{\rm D} \cdot D_{\rm seg}, \gamma_{\rm D} = 2.0$	6	6	4	.9	5	.8	4.8	4.0	10.2	2.5	2.5	5.5	
$\sigma_{a seg} = \sigma_{a}$	12	.9	12	2.9	12	2.9	12.9	12.9	12.9	12.9	12.9	12.9	
$M_{0a \text{ seg}} = \mu \cdot D_{a \text{ seg}} \cdot S_{a \text{ seg}}$	3.16	=+19	1.35	E+19	2.25	E+19	4.87E+18	2.90E+18	4.73E+19	2.29E+18	2.29E+18	2.55E+19	
$S_{a1} = 2/3 \times S_{a,seg}$ ($\pm 72/4 S_{a1} = S_{a,seg}$)	_	154.7	_	87.8	-	123.3	32.7	23.1	99.3	29.7	29.7	148.0	
$D_{a1} = (\gamma_1 / \Sigma \gamma_1^{-3}) \cdot D_{a \text{ seg}}$	_	6.6	_	4.9	_	5.8	4.8	4.0	11.3	2.5	2.5	5.5	
$\sigma_{\rm al} = \sigma_{\rm a seg}$	_	12.9	-	12.9	-	12.9	12.9	12.9	12.9	12.9	12.9	12.9	
$\frac{2\text{Km} \times 972 \pm 94}{\text{S}}$	_	16 × 10	_	8 × 10	_	12 × 10	6 × 6	4 X 0	12 × 8	4 × 0	4 × 6	14 × 10	
$S_{a2} = 1/3 \wedge S_{a} \operatorname{seg}$ $D_{a} = 6 \sqrt{S_{a}} \frac{3}{3} \sqrt{D}$									49.0				
$D_{a2} = (\gamma_2/2\gamma_i) \cdot D_{a seg}$	_	_	_	_	_	_	_	_	8.0	_	_	_	
$O_{a2} - O_{a scg}$ $2km \neq 2k \rightarrow 1 + 1 \neq 2$	_	_	_		_	_	_	_	8 X 6	_	_	_	
$\frac{S_{\rm hour} = S_{\rm model courses} - S_{\rm hourse}}{S_{\rm hourses} - S_{\rm hourses}}$	19	3.6	11	1.5	15	6.7	41.6	29.4	189.3	37 7	37.7	188.0	
$D_{\rm h} = M_{\rm 0h} = M_{\rm 0h} = m(\mu \cdot S_{\rm h} \cos)$	0	7	0	.5	0	6	0.5	0.4	1 1	03	03	0.6	
$\sigma_{\rm h} = (D_{\rm h} \cos/W_{\rm h} \cos) \times (\pi^{1/2}/D_{\rm h} \cos) \times (r \cdot \Sigma y_{\rm s}^{-3} \cdot \sigma)$	0	8	0	.6	0	.8	0.8	0.6	1.2	0.4	0.4	1.0	
$M_{0b seg} = M_{0seg} - M_{0a seg}$	4.29	E+18	1.83	E+18	3.05	E+18	6.60E+17	3.92E+17	6.41E+18	3.10E+17	3.10E+17	3.46E+18	

表 3.4-14 糸魚川静岡構造線断層帯北部区間~中南部区間が同時に活動する地震の震源パラメータ。

巨視的震源パラメータ		設定方法	ケース1~12											
断層長さ L	km	—					_							
地震規模 M		-					—							
地震モーメント M ₀	Nm	$M_0 = S \times 10^{17}$				1.81E+20								
モーメントマグニチュード M _w		$(\log M_0 - 9.1) / 1.5$		7.4										
断層原点位置(地中)	°N	長期評価に基づく	35.983	36.023	36.069	36.079	36.056	36.007	35.828	35.755	35.551			
de tra	°E	長期評価に基づく	138.162	138.091	138.059	138.049	138.106	138.131	138.260	138.343	138.415			
走回 θ	, o	長期評価に基づく	304.6	330.9	339.2	116	157.7	141.2	137.5	164.0	205.1			
		反期評価に基づく	70	70	70	70	70	70	45	45	45			
リヘリ用え	1	「曽四側隆起の辺断層」 地震其い源さしつ…」の深い士	0	0	0	0	0	0	90	90	90			
上晌休さ <i>D</i> top 熊民エジル反即日キャ	km	地震基盤保さとZKM の保い方 原題語伝いたが「たいかったまする	2	2	2	2	2	2	4	4	4			
阿盾てノル区间皮で L model_seg	Km	長期評価およい「レンビ」に基づく	(8)	(6)	(34)	(6)	(6)	24	(12)	(26)	(16)			
断層でプラレ区间幅 W model_seg	km	長期評価および「レジビ」に基つく 	10	10	10	14	14	14	22	22	22			
断用 モ て ル 区 間 面 積 S _{model_seg}	km ²	$S_{\text{model_seg}} = L_{\text{model}} \times W_{\text{model}}$	74.3	52.5	338.2	67.4	67.4	336.0	203.0	413.9	254.9			
)町層モデル面積 S _{model}	km ²	$S_{\text{model}} = \Sigma S_{\text{model}_seg}$				1807.5								
平均すべり量D	m	$D = M_0/(\mu \cdot S_{\text{model}})$				3.2								
平均静的応力降下量 $\Delta\sigma$	Fujii and Matsu'ura (2000)	3.1												
微視的震源パラメータ			 中 府 部 南 部											
短周期レベル A	Nm/s ²	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$ (参考值)					3.00E+19							
アスペリティ総面積 S _a	km ²	$S_{a} = 0.22 \cdot S_{model}$					397.6							
アスペリティの実効応力 $\sigma_{ m a}$	MPa	$\sigma_{\rm a} = \Delta \sigma_{\rm a} = S / S_{\rm a} \times \Delta \sigma$	14.1											
区間地震モーメント M _{0seg}	Nm	単独活動時の地震モーメントに比例して分離		6.74E+19			3.68E+19			7.65E+19				
		面積の1.5乗に比例して分配	5.96E+18	3.55E+18	5.79E+19	2.80E+18	2.80E+18	3.12E+19	1.44E+19	4.19E+19	2.02E+19			
区間平均すべり量 D _{seg}	m	$D_{\text{seg}} = M_{0\text{seg}} / (\mu \cdot S_{\text{seg}})$	2.6	2.2	5.5	1.3	1.3	3.0	2.3	3.2	2.5			
11 全 面積 S _{a scg}	km ²	単位区間の面積に比例して配分	16.3	11.6	74.4	14.8	14.8	73.9	44.7	91.0	56.1			
^リ ア 平均すべり量 D _{a seg}	m	$D_{\rm a seg} = \gamma_{\rm D} \cdot D_{\rm seg}, \gamma_{\rm D} = 2.0$	5.1	4.3	11.0	2.7	2.7	6.0	4.5	6.5	5.1			
$^{\prime}_{7}$ ス 実効応力 $\sigma_{a see}$	MPa	$\sigma_{\rm a seg} = \sigma_{\rm a}$	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1			
^ペ 地震モーメント $M_{0a seg}$	Nm	$M_{0a \text{ seg}} = \mu \cdot D_{a \text{ seg}} \cdot S_{a \text{ seg}}$	2.62E+18	1.56E+18	2.55E+19	1.23E+18	1.23E+18	1.37E+19	6.33E+18	1.84E+19	8.90E+18			
ペ 笛 面積 S _{al}	km ²	$S_{a1} = 2/3 \times S_{a see}$ (または $S_{a1} = S_{a see}$)	16.3	11.6	49.6	14.8	14.8	73.9	44.7	91.0	56.1			
リ 1 すべり量 D _{a1}	m	$D_{a1} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_{a}$ set	5.1	4.3	12.2	2.7	2.7	6.0	4.5	6.5	5.1			
テア 実効応力 σ_{a}	MPa	$\sigma_{a1} = \sigma_{a}$ reg	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1			
イス計算用面積	km×km	2kmメッシュサイズ	4 × 4	2 × 4	8 × 6	4 × 4	4 × 4	10 × 8	6 × 8	12 × 8	6 × 10			
ペ金 面積 Sa2	km ²	$S_{a2} = 1/3 \times S_{a,sca}$	_	_	24.8	_	_	_	-	_	-			
リ2 すべり量 D.	m	$D_{r,2} = (\gamma_2 / \Sigma \gamma_1^3) \cdot D_{r,2}$	_	_	8.6	_	_	_	_	_	_			
テア実効応力の。	MPa	$\sigma_{a2} = \sigma_{aaaa}$	_	_	14.1	_	_	_	_	_	_			
イス計算用面積	$km \times km$	∇az Calseg 2kmメッシュサイズ	_	_	6×4	_	_	_	_	_	_			
非 面積 Sh see	km ²	$S_{\rm h} = S_{\rm model} = S_{\rm a}$	58.0	41.0	263.8	52.5	52.5	262.1	158.3	322.8	198.8			
日 日 日 日 ー ー ー ー ー ー ー ー ー ー ー ー ー ー	m	$D_{\text{L}} = M_{\text{Ob}} = \frac{1}{(\mu \cdot S_{\text{L}} - \mu)}$	1.8	1.6	3.9	1.0	1.0	21	1.6	2.3	1.8			
〔 〔 〔 〔 〔 〔 〕 〔 〕 〕 、 〕 、 二 こ 〕 。 seg	MPa	$\sigma_{\rm r} = (D, -/W, -) \times (\pi^{1/2}/D) \times (r \cdot \Sigma u^3 \cdot \sigma)$	2.0	1.0	3.0	1.0	1.0	2.1	1.0	1.0	1.0			
域 地震モーメント Mat	Nm	$M_{\text{Obs}} = M_{\text{Oss}} - M_{\text{Oss}}$	3 34F+18	1.99F+18	324F+19	1.57E+18	1 57E+18	1 75E+19	8 05E+18	2 34F+19	1 13E+19			
Dide C / J Di Seg	INIII	101 0b seg 101 0seg 101 0a seg	0.046 10	1.331 10	0.24010	1.57 - 10	1.07 - 10	1.700 10	0.000 10	2.07010	1.100.10			

表 3.4-15 糸魚川静岡構造線断層帯中北部区間~中部区間が同時に活動する地震の震源パラメータ。

巨視的震源パラメータ		設定方法	ケース1~16															
) 断層長さ <i>1</i>	km	-								_								
地震規模 M										-								
地震モーメント M ₀	Nm	$M_0 = S \times 10^{17}$								2.64E+20								
モーメントマグニチュード Mw		$(\log M_0 - 9.1) / 1.5$								7.5								
断層原点位置(地中)	°N	長期評価に基づく	36.355	36.364	36.533	36.537	36.651	36.645	35.983	36.023	36.069	36.079	36.056	36.007	35.828	35.755	35.551	
	°E	長期評価に基づく	137.957	137.994	137.893	137.932	137.898	137.937	138.162	138.091	138.059	138.049	138.106	138.131	138.260	138.343	138.415	
$走向 \theta$	0	長期評価に基づく	343.7	343.7	2.0000	2.0	18.9	18.9	304.6	330.9	339.2	116.0000	157.7	141.2	137.5	164.0	205.1	
傾斜角 δ	°	長期評価に基づく	30	60	30	60	30	60	70	70	70	70	70	70	45	45	45	
すべり角え	°	「南西側隆起の逆断層」	90	90	90	90	90	90	0	0	0	0	0	0	90	90	90	
上端深さ D top	km	地震基盤深さと2km の深い方	2	4	2	4	2	4	2	2	2	2	2	2	4	4	4	
断層モデル区間長さ L model_seg	km	長期評価および「レシビ」に基づく	(2)	0)	(1	2)	(16	3)	(8)	(6)	(34)	(6)	(6)	24	(12)	(26)	(16)	
断層モデル区間幅 W model_seg	km	長期評価および「レシビ」に基づく	12	8	1 1	8	18	3	10	10	10	14	14	14	22	22	22	
断層モデル区間面積 S _{model seg}	km ²	$S_{\text{model seg}} = L_{\text{model}} \times W_{\text{model}}$	35	1.3	19	э.з	280).0	74.3	52.5	338.2	67.4	67.4	336	203.0	413.9	254.9	
断層モデル面積 S _{model}	km ²	$S_{\text{model}} = \Sigma S_{\text{model seg}}$								2638.0								
平均すべり量D	m	$D = M_0 / (\mu \cdot S_{\text{model}})$								3.2								
平均静的応力降下量 Δσ	MPa	Fujii and Matsu'ura (2000)								3.1								
微視的震源パラメータ	-				1	部				中北部	-		中南部	-		南部		
短周期レベル A	Nm/s ²	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$ (参考値)								3.40E+19								
アスペリティ総面積 S _a	km ²	$S_a = 0.22 \cdot S_{model}$								580.4								
アスペリティの実効応力 σ _a	MPa	$\sigma_a = \Delta \sigma_a = S / S_a \times \Delta \sigma$								14.1								
区間地震モーメント M _{0seg}	Nm	単独活動時の地震モーメントに比例して分配			8.29	E+19				6.75E+19			3.69E+19			7.65E+19		
1 - 1		面積の1.5乗に比例して分配	3.88E+19 1.66E+19		2.76E+19		5.97E+18 3.55E+18		5.80E+19	2.75E+18	2.75E+18	3.07E+19	1.44E+19	4.19E+19	2.03E+19			
区間平均すべり量 D _{seg}	m	$D_{\text{seg}} = M_{0\text{seg}} / (\mu \cdot S_{\text{seg}})$	3.	.5	2	.7	3.	2	2.6	2.2	5.5	1.3	1.3	2.9	2.3	3.2	2.5	
n 全 面積 S _{a seg}	km ²	単位区間の面積に比例して配分	77	.3	43	.8	61	.6	16.3	11.6	74.4	14.8	14.8	73.9	44.7	91.0	56.1	
リア 平均すべり量 Da seg	m	$D_{a scg} = \gamma_{\rm D} \cdot D_{scg}, \gamma_{\rm D} = 2.0$	7.	.1	5.	.3	6.	3	5.1	4.3	11.0	2.6	2.6	5.8	4.5	6.5	5.1	
γ ス 実効応力 $\sigma_{a see}$	MPa	$\sigma_{a seo} = \sigma_{a}$	14	£1	14	.1 I	14	.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	
ペ 地震モーメント M _{Oa scg}	Nm	$M_{0a \text{ see}} = \mu \cdot D_{a \text{ see}} \cdot S_{a \text{ see}}$	1.71E	E+19	7.29	=+18	1.21E	+19	2.63E+18	1.56E+18	2.55E+19	1.21E+18	1.21E+18	1.35E+19	6.33E+18	1.84E+19	8.91E+18	
<注意面積 S _{al}	km ²	$S_{al} = 2/3 \times S_{a seg} (\pm \hbar t S_{al} = S_{a seg})$	-	77.3]	43.8	-	61.6	16.3	11.6	49.6	14.8	14.8	73.9	44.7	91.0	56.1	
リ 1 すべり量 D _{al}	m	$D_{\mu\nu} = (\gamma_1 / \Sigma \gamma_1^3) \cdot D_{\mu\nu} = 0$		7.1	_	5.3	- I	6.3	5.1	4.3	12.2	2.6	2.6	5.8	4.5	6.5	5.1	
テア 実効応力 σ.	MPa	$\sigma_{a1} = \sigma_{a}$ and $\sigma_{a1} = \sigma_{a}$		14.1	_	14.1	- I	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	
イス計算用面積	km×km	2kmメッシュサイズ		10 × 8	_	6 × 8	-	10 × 6	4 × 4	4 × 4	8 × 6	4 × 4	4 × 4	10 × 8	4×6	4 × 6	14 × 10	
べ 一面積 Sa	km ²	$S_{a2} = 1/3 \times S_{a}$ see	_		_			_			24.8		<u> </u>	<u> </u>				
リ2 寸べり量 D	 m	$D_{\alpha} = (\gamma_{\alpha}/\Sigma\gamma_{\alpha}^{3}) \cdot D_{\alpha} \dots$		i _	_			_	_	_	8.6			_		_	_	
テア国際広力で、	MPa	$D_{a2} = \sigma$				_		_		_	14 1			_		_	_	
イス計算用面積	km×km	2kmメッシュサイズ	_	i —	_		- I	_	_	_	6×4			_]		_	1 - 1	
all 前積 Sh. cor	km ²	$S_{\rm h} = S_{\rm model} = S_{\rm h}$	27.	4.0	15	5.4	215	3.4	58.0	41.0	263.8	52.5	52.5	262.1	158.3	322.8	198.8	
		D = 16 ((, C)	2	5	1	a	2	3	1.8	1.6	3.9	0.9	0.9	21	1.6	2.3	1.8	
	m	\mathbf{v}_{J} = \mathbf{u}_{J} , \mathbf{u}_{H} , \mathbf{v}_{S} , \mathbf{u}_{H}		2.5		2.5 1.9								1			6	4 1.548
	m MBa	$D_{b seg} = M_{0b seg} (\mu + S_{b seg})$ $\sigma = -(D - (W -) \times (\pi^{1/2}(D -)) \times (\pi + \Sigma x^3 + \sigma)$	2	2.2		7	1 2 .	7	2.0	2.0	2.2	1.4	1.4	2.0	0.0	0.0	22	
ペ第 面積 S _a り 2 すべり量 D _a テア 実効応力 σ _a イス 計算用面積 背 面積 S _{b,SS} の前 S _b ,SS	$\frac{\text{km}^2 \text{km}^2}{\text{m}}$ $\frac{\text{MPa}}{\text{km} \times \text{km}}$ $\frac{\text{km}^2 \text{km}^2}{\text{km}^2}$	$S_{n1}^{(3)} = 1/3 \times S_{n} \sup_{s \in s_{n}} D_{n2} = (\gamma_{2}/\Sigma \gamma_{1}^{3}) \cdot D_{n} \sup_{s \in s_{n}} \sigma_{n1} = \sigma_{n} \sup_{s \in s_{n}} \frac{2km \times \gamma_{2} \times \gamma_{2} + \gamma_{1} \times \gamma_{2} \times \gamma_{2}}{S_{b_{s} og}} = S_{model_{s} og} \times S_{a_{s} s eg}$	 27 [.]		- - - 15 ¹	 5.4 9	- - - 21!				24.8 8.6 14.1 <u>6 × 4</u> 263.8 3.9							

表 3.4-16 糸魚川静岡構造線断層帯全体が同時に活動する地震の震源パラメータ。

図 3.4-17 長野盆地西縁断層帯全体が同時に活動する地震の震源モデル模式図。 F14711

図 3.4-18 深谷断層帯および綾瀬川断層鴻巣-伊奈区間が同時に活動する地震の震源モデ ル模式図。

図 3.4-19 深谷断層帯および綾瀬川断層全体が同時に活動する地震の震源モデル模式図。

図 3.4-20 糸魚川-静岡構造線断層帯北部区間+中北部区間が同時に活動する地震の震源 モデル模式図。

図 3.4-21 糸魚川-静岡構造線断層帯中北部区間+中南部区間が同時に活動する地震の震 源モデル模式図。

図 3.4-22 糸魚川-静岡構造線断層帯中南部区間+南部区間が同時に活動する地震の震源 モデル模式図。

図 3.4-23 糸魚川-静岡構造線断層帯北部区間~中南部区間が同時に活動する地震の震源 モデル模式図。

図 3.4-24 糸魚川-静岡構造線断層帯中北部区間~南部区間が同時に活動する地震の震源 モデル模式図。

図 3.4-25 糸魚川-静岡構造線断層帯全体が同時に活動する地震の震源モデル模式図。

図 3.4-25 糸魚川-静岡構造線断層帯全体が同時に活動する地震の震源モデル模式図(つ づき)。

(2)計算結果

地震動シミュレーションにあたって、地下構造モデルは長周期地震動評価 2016 年試作版 (地震調査委員会、2016c)で用いられた、浅部・深部統合地盤モデルに基づく深部地盤モ デルを用いた。ただし、全国地震動予測地図 2016 年版(地震調査委員会、2016a)の結果 と比較できるよう、工学的基盤は Vs=600m/s とした。計算は GMS(青井・他、2004)を 用いて、周期 1 秒以上を対象として行った。図 3.4-26 に深谷断層帯単独の活動の地震につ いて、本検討における計算速度波形とJ-SHISより公開されている全国地震動予測地図 2016 年版の速度波形と比較した例を示す。地下構造モデルが異なることにより、計算波形に若 干の違いが見られるものの、大局的には似た波形となっている。

東京都庁、神奈川県庁、千葉県庁および埼玉県庁位置における工学的基盤上の速度波形 の例(各地震のケース 1)を図 3.4-27~図 3.4-30に、速度応答スペクトル(減衰定数 5%) を図 3.4-31~図 3.4-34 にそれぞれ示す。震源が関東平野内にある深谷断層および綾瀬川断 層との同時活動において、大きな振幅となっており、速度応答スペクトルは周期によって は 100cm/s を超えている。また、糸魚川-静岡構造線断層帯による地震動も、南関東地域 に対しては震源から遠いにもかかわらず 1)のスラブ内地震の結果と比べても大きな振幅 となっており、速度応答スペクトルも 20cm/s 以上となっているケースも少なくない。

なお、本検討では「レシピ」に従った震源モデルのため、震源断層モデルの上端深さが 地震発生層の上端深さ(2~5km)となっており、地表(0km)とはなっていない。しかし ながら、平成28年熊本地震においては地表に明瞭な断層が現れ、地表付近において数m程 度の変位が現れている場所もあることが確認されており、大きな長周期地震動が震源断層 ごく近傍の熊本県西原村の震度計で記録されている。従って、このような地震発生層以浅 の地表付近の大きなすべりをモデル化することにより、活断層の地震で発生する長周期地 震動は、特に震源断層ごく近傍において本検討の計算結果よりも大きくなる可能性が高い。 この点に関しては、地表付近の詳細な断層の位置・形状やすべり(破壊)過程のモデル化 手法の確立に向けた検討が必要である。

図 3.4-26 深谷断層帯が単独で活動する地震の速度波形の比較(上; J-SHIS、下:本検討)。

図 3.4-27 地震動シミュレーション結果(速度波形;東京都庁位置)。

図 3.4-28 地震動シミュレーション結果(速度波形;神奈川県庁位置)。

図 3.4-29 地震動シミュレーション結果(速度波形;千葉県庁位置)。

図 3.4-30 地震動シミュレーション結果(速度波形;埼玉県庁位置)。

図 3.4-31 地震動シミュレーション結果(速度応答スペクトル;東京都庁位置)。

図 3.4-32 地震動シミュレーション結果(速度応答スペクトル;神奈川県庁位置)。

図 3.4-33 地震動シミュレーション結果(速度応答スペクトル;千葉県庁位置)。

図 3.4-34 地震動シミュレーション結果(速度応答スペクトル;埼玉県庁位置)。

(3) 国府津-松田断層帯のモデル化に関する検討

国府津一松田断層帯は、関東地域の活断層の長期評価(第一版)(地震調査委員会、2014) において、『』と評価されている。このような海溝型巨大地震と同時に陸域の活断層が活動 する地震は、近代的な地震観測が開始されて以後世界的にも事例がなく、どのような地震 動が放出されるか不明である。従って、現状で考えられる複数のモデル化手法を考慮する 必要がある。

一つは、通常の活断層と同様に扱い、「レシピ」の活断層で発生する地震のモデル化を行 うことである。現時点においてもう一つ考えられるモデルとして、長周期地震動評価 2016 年試作版(地震調査委員会、2016c)の相模トラフ巨大地震の震源域において、プレート上 面深さが 10km 以浅の場合にすべり速度時間関数を中村・宮武(2000)による近似式では なく、smoothed ramp を用いてゆっくりと滑る様子をモデル化したものがある。

(c) 結論および今後の課題

相模トラフ沿いのマグニチュード 7 クラスのスラブ内地震による関東平野内での長周期 地震動の大きさを見積もるため、スラブ内地震の震源モデルについて整理し、短周期レベ ルやアスペリティ面積について整理した。その結果「レシピ」に従ってモデル化した震源 モデルにより長周期地震動を計算することの妥当性を確認した。このことを踏まえ、安静 江戸地震を想定したマグニチュード 7 クラスのスラブ内地震の地震動シミュレーションを 行った。その結果、比較的震源に近い東京都庁、埼玉県庁、千葉県庁および神奈川県庁位 置で計算された地震動に関して、震度に大きく影響を及ぼす地震動の短周期成分がやや過 小評価の可能性があるものの、周期2秒程度以上の地震動強さは、減衰定数5%の速度応答 スペクトルで 20cm/s 以下となった。ただし、地震調査委員会による確率論的地震動予測地 図では、関東直下において太平洋プレートのスラブ地震もモデル化されており、その最大 規模は M8.2 となっている。発生頻度は低いものの、マグニチュード8クラスのスラブ内地 震による長周期地震動についても検討の余地が残されている。

一方、関東地域周辺の活断層について、長さが 50km を超え規模が大きくなる地震を対象として長周期地震動シミュレーションを行った。その結果計算された長周期地震動は、 関東平野内にある深谷断層帯・綾瀬川断層、ならびに、規模が大きくなる糸魚川ー静岡構 造線断層帯の3区間以上が同時に活動する地震において、減衰定数5%の速度応答スペクト ルが100cm/sを超える結果も見られた。

ただし、本検討では「レシピ」に従って震源断層上端を 2~5km と設定している。平成 28 年熊本地震を踏まえると、今後、規模の大きな活断層で発生する地震に関しては、地震 発生層以浅についても震源断層としてモデル化する必要があり、その場合、長周期地震動 は本検討の結果よりもさらに大きくなる可能性が高い。今後、詳細なモデル化手法の確立 が必要である。

相模トラフ巨大地震と同時に活動すると評価されている国府津一松田断層帯に関して、 従来の活断層で発生する地震を対象としたモデル化手法による震源モデルに加え、相模ト ラフ巨大地震の長周期地震動評価において、プレート上面深さが 10km 以浅の震源域に対して仮定した、すべり速度時間関数が smoothed ramp 型となる、短周期成分の地震動があまり励起されない震源モデルの可能性を挙げた。

(d) 引用文献

- 青井真・早川俊彦・藤原広行 (2004): 地震動シミュレータ: GMS, 物理探査, 57, 651-666. 青井真・関ロ春子・功刀卓・森川信之・本多亮・藤原広行 (2005): 近地強震波形記録を 用いた波形インバージョンによる 2003 年宮城県沖地震の震源破壊過程, 月刊地球, pp. 29-34.
- 新井健介・壇一男・石井透・花村正樹・藤原広行・森川信之(2015): 強震動予測のための スラブ内地震の断層パラメータ設定方法の提案,日本建築学会構造系論文集,第80巻,第 716号,1537-1547.
- 浅野公之・岩田知孝・入倉孝次郎(2004):2003年5月26日宮城県沖で発生したスラブ内 地震の震源モデルと強震動シュミュレーション,地震,第2輯, Vol. 57, pp. 171-185.
- Asano, K., T. Iwata, and K. Irikura (2004) : Characterization of source models of shallow intraslab earthquakes using strongmotion data, Proceedings of 13th WCEE, no. 835.
- 浅野公之・岩田知孝(2010):経験的グリーン関数法による 2009 年 8 月 11 日駿河湾の 地震(M_{JMA} 6.5)の震源モデルの推定と強震動シミュレーション,北海道大学地球物理学 研究報告, No.73, pp. 137-147.
- Baker, Glenn Eli and Charles A. Langston (1987) : Source parameters of the 1949 magnitude 7.1 south Puget Sound, Washington, earthquake as determined from long-period body waves and strong ground motions, Bulletin of the Seismological Society of America, Vol. 77, No. 5, pp. 1530-1557.
- 防災科学研究所(2001):2001 年4月3日静岡県中部の地震活動, 地震予知連絡会会報, 第66巻, 5-4, pp. 241-244.
- 壇一男・渡辺基史・佐藤俊明・石井透(2001):断層の非一様すべり破壊モデルから算定さ れる短周期レベルと半経験的波形合成法による強震動予測のための震源断層のモデル化, 日本建築学会構造系論文集,第545号, pp. 51-62.
- 壇一男・武藤尊彦・宮腰淳一・渡辺基史(2006):スラブ内地震による強震動を予測するための特性化震源モデルの設定方法,日本建築学会構造系論文集,No. 600, pp. 35-42.
- Delouis, Bertrand and Denis Legrand (2007) : Mw 7.8 Tarapaca intermediate depth earthquake of 13 June 2005 (northern Chile): Fault plane identification and slip distribution by waveform inversion, Geophysical Research Letters, Vol. 34, L01304.
- Garcia, D., Shri Krishna Singh, Miguel Herraiz, Javier Francisco Pacheco, and M. Ordaz: Inslab earthquakes of central Mexico (2004) : Q, source spectra, and stress drop, Bulletin of the Seismological Society of America, Vol. 94, No. 3, pp. 789-802.
- Global CMT (Harvard CMT): Global CMT CatalogSearch, (http://www.

globalcmt.org/CMT se arch. html 2017/2/27 参照).

- 原田怜・釜江克宏 (2011): 2011 年 4 月 7 日宮城県沖のスラブ内地震の震源のモデル化, 京都大学原子炉ま験所 (http://www.rri.kyoto-u.ac.jp/jishin/eq/tohoku2/20110407miya gioki_slab.pdf, 2017/2/16 参照).
- Harada S., K. Kamae, H. Kawabe, and H. Uebayashi (2012) : Source modeling of the off Miyagi Intraslab Earthquake (M_{JMA} = 7.1) occurred on April 7, 2011, Proceedings of 15th WCEE.
- Hernandez, B., N. M. Shapiro, S. K. Singh, J. F. Pacheco, F. Cotton, M. Campillo, A. Iglesias, V. Cruz, J. M. Gomez, and L. Alcantara (2001) : Rupture history of September 30, 1999 intraplate earthquake of Oaxaca, Mexico (Mw=7.5) from inversion of strong-motion data, Geophysical Research Letters, Vol.28, No. 2, pp. 363-366.
- 引間和人・山中佳子・纐纈一起・菊地正幸(2003): 強震動・遠地実体波による 2003 年 5 月 26 日宮城県沖の地震の震源過程,日本地震学会講演予稿集, p.179, 2003.
- Ichinose, Gene A., Hong Kie Thio, and Paul G. Somerville (2004) : Rupture process and near-source shaking of the 1965 Seattle-Tacoma and 2001 Nisqually, intraslab earthquakes, Geophysical Research Letters, Vol. 31, L10604.
- Ichinose, Gene A., Hong Kie Thio, and Paul G. Somerville (2006) : Moment tensor and rupture model for the 1949 Olympia, Washington, eaathquake and scaling relations for Cascadia and global intraslab earthquakes, Bulletin of the Seismological Society of America, Vol. 96, No. 3, pp. 1029-1037.
- 池田孝・武村雅之・加藤研一(2002): 強震記録に基づく北海道周辺のやや深発地震の高 振動数成分の励起特性,日本建築学会構造系論文集,第 560 号, pp. 67-73.
- 池田孝・武村雅之・加藤研一(2004): 強震記録に基づくフィリピン海プレート内で発生 するスラブ内地震の高振動数成分の励起特性・北海道・東北地方のスラブ内地震との比較 -,日本建築学会構造系論文集,第586号, pp. 53-61.
- 池田隆明・釜江克宏・小長井一男・高瀬裕也(2014):特性化震源モデルを用いた 2014 年 伊予灘の地震の強震動シミュレーション,土木学会第 69 回年次学術講演会, I-429, pp.857-858.
- Iwata, T. and K. Asano (2011) : Characterization of the heterogeneous source model of intraslab earthquakes toward strong ground motion prediction, Pure Appl. Geophys., Vol. 168, pp. 117-124.
- 地震調査委員会(2016a):「全国地震動予測地図 2016 年版」(平成 28 年 6 月 10 日公表).

地震調査委員会(2016b):「全国地震動予測地図 2016 年版」(平成 28 年 6 月 10 日公表),別冊,震源断層を特定した地震の強震動予測手法(「レシピ」)(平成 28 年 6 月 10 日改訂).

地震調査委員会(2016c):長周期地震動評価 2016 年試作版-相模トラフ巨大地震の検討-(平成 28 年 10 月 9 日公表).

川辺秀憲・釜江克宏・上林宏敏(2011):2009年駿河湾の地震(Mj6.5)の震源モデル,日本

建築学会大会(北陸), pp.707-708.

- Kikuchi, M. and H. Kanamori (1995) : The Shikotan earthquake of October 4, 1994: lithospheric earthquake, Geophysical Research Letters 22, pp. 1025-1028.
- 菊地正幸(2003): リアルタイム地震学, 東京大学出版, pp. 142-143.
- 国土地理院(2003):2003年5月26日宮城県沖の地震に伴う地殻変動について,地理院報 道発表資料5月26日(http://www.gsi.go.jp/WNEW/PRESS-RELEASE/2003-0527.html, 2017/2/16参照).
- 倉橋奨・入倉孝次郎・宮腰研・正木和明(2009): 2009 年駿河湾を震源とする地震の震源 モデルの構築と波形シミュレーション,日本地震学会講演予稿集秋季大会, P1-20, p.160.
- 森川信之・笹谷努・藤原広行(2002):経験的グリーン関数法によるスラブ内地震の震源 モデルの構築,第11回日本地震工学シンポジウム.
- Morikawa, N. and T. Sasatani (2004) : Source models of two large intraslab earthquakes from broadband strong ground motions, Bulletin of the Seismological Society of America, Vol. 94, pp. 803-817.
- Morikawa, N. and H. Fujiwara (2013) : A New Ground Motion Prediction Equation for Japan Applicable up to M9 Mega-Earthquake, Journal of Disaster Research, Vol.8, No.5, pp.878-888.
- 森川信之・藤原広行(2015):海溝型プレート内地震のための地震動予測式の補正項に関 する検討,日本地球惑星科学連合大会 2015 予稿集, SSS25-14.
- Nishimura, I. et al (2001) : Response Spectra for design purpose of stiff structures on rock sites, SMiRT 16, Paper#1133.
- 野津厚(2003):表層地盤の非線形挙動を考慮した 1993 年釧路沖地震の強震動シミュレーション,土木学会地震工学論文集, Vol. 27, No. 0202, pp. 1-8.
- 野津厚 (2010):2009 年 8 月 11 日駿河湾の地震(M_j6.5)の特性化震源モデル,日本建築学会 大会(北陸), pp.705-706.
- Ohta, Y., S. Miura, M. Ohzono, S. Kita, T. Iinuma, T. Demachi, K. Tachibana, T. Nakayama, S. Hirahara, S. Suzuki, T. Sato, N. Uchida, A. Hasegawa, and N. Umino (2011) : Large intraslab earthquake (2011 April 7, M 7.1) after the 2011 off the Pacific coast of Tohoku Earthquake (M 9.0): Coseismic fault model based on the dense GPS network data, Earth Planets Space, Vol. 63, pp. 1207-1211.
- Okada, T. and A. Hasegawa (2003) : The M7.1 May 26, 2003 off-shore Miyagi Prefecture Earthquake in northeast Japan: Source process and aftershock distribution of an intra-slab event, Earth Planets Space, Vol. 55, pp. 731-739.
- Santoyo, Miguel A., Shri K. Singh, and T. Mikumo (2005) : Source process and stress change associated with the 11 January, 1997 (M_W =7.1) Michoacan, Mexico inslab earthquake, Geofisica Internacional, Vol. 44, No.4, pp. 317-330.
- 笹谷努・森川信之・前田宣浩(2006):スラブ内地震の震源特性,北海道大学地球物理学研 究報告, No. 69, pp. 123-134.

- Sasatani, T., N. Takai, M. Shigefuji, Y. Miyahara, W. Kawabata, and Y. Okazaki (2012) : Source characteristics of large outer rise earthquakes in the Pacific Plate, Proceedings of 15th WCEE.
- 佐藤智美(2010):スペクトルインバージョンと経験的グリーン関数法に基づく 2009 年駿 河湾の地震の震源モデルの推定,日本建築学会構造系論文集, Vol. 75, No. 658, pp. 2153-2162.
- 佐藤智美(2013):東北地方のアウターライズ地震,スラブ内地震,プレート境界地震の 短周期レベルと f_{max}及び距離減衰特性,日本建築学会構造系論文集, Vol. 78, No. 699, pp. 1227-1236.
- 佐藤智美(2015)表面波と散乱波を経験的に考慮した統計的グリーン関数生成手法に基づく 1987 年千葉県東方沖地震(M」6.7)の強震動シミュレーション,日本地震工学会論文集, 第 15 巻, 第 7 号(特集号), pp.34-48.
- 佐藤智美(2016a):太平洋プレートの海溝型地震の広帯域震源モデルに基づく微視的断層 パラメータの特性,日本建築学会構造系論文集,第724号,pp.937-947.
- 佐藤智美(2016b):経験的グリーン関数法に基づく1855年安政江戸地震の広帯域震源モ デルと首都圏及び広帯域での地震動の推定,日本建築学会構造系論文集,第727号, pp.1423-1433.
- Seno, Tetsuzo and Masaki Yoshida (2004) : Where and why do large shallow intraslab earthquakes occur?, Physics of the Earth and Planetary Interiors, Vol. 141, pp. 183-206.
- 芝良昭・野口科子(2012): 広帯域地震動を規定する震源パラメータの統計的特性・震源インバージョン解析に基づく検討・,地球工学研究所 電力中央研究所報告書, N11054, pp.1-28.
- 首都直下地震モデル検討会(2013): 首都直下の M7 クラスの地震及び相模トラフ沿いの M8 クラスの地震等の震源断層モデルと震度分布・津波高等に関する報告書.
- 染井一寛・宮腰研・岡崎敦(2012):経験的グリーン関数法から推定した 2011 年 4 月 7 日 宮城県沖のスラブ内地震の震源モデル,日本建築学会大会, pp. 85-86.
- 染井一寛・宮腰研・入倉孝次郎(2012): 強震波形インバージョンから推定した 2011 年 4 月 7 日宮城県沖のスラブ内地震の震源過程,日本地震学会大会, P3-50, p. 251.
- Somerville, P., K. Irikura, R. Graves, S. Sawada, D. Wald, N. Abrahamson, Y. Iwasaki, T. Kagawa, N. Smith, and A. Kowada (1999) : Characterizing crustal earthquake slip models for the prediction of strong ground motion, Seismological Research Letters, Vol. 70, No. 1, pp. 59-80.
- Suzuki, W., S. Aoi, and H. Sekiguchi (2009) : Rupture process of the 2008 northern Iwate, intraslab, earthquake derived from strong motion records, Bull. Seism. Soc. Am. Vol.99, pp. 2825-2835.
- Takeo M., S. Ide, and Y. Yoshida (1993) : THE 1993 KUSHIRO-OKI JAPAN EARTHQUAKE A HIGH STRESS-DROP EVENT IN A SUBDUCTING SLAB,

GEOPHYSICARLE SEARCLHE TTERSV, Vol. 20, No. 23, pp. 607-2610.

上野寛・追田浩司・吉田康宏(2009): 近地強震波形を用いた駿河湾の地震(平成 21 年 8 月 11 日; M_i6.5)の震源過程解析,日本地震学会講演予稿集秋季大会, P1-19, p.160.

宇佐美龍夫(2003):最新版日本地震被害総覧,東京大学出版会.

- 宇佐美龍夫・大和探査技術株式会社(編)(1994) : わが国の歴史地震の震度分布・等震 度線図、日本電気協会.
- 八木勇治(2003): 2003 年 5 月 26 日宮城県沖で発生した地震(M_{jma} 7.0)の震源過程, 建築研究
 研究所

(http://iisee.kenken.go.jp/staff/yagi/eq/east_honshu20030526/east_honshu200305 26-j.html, 2017/2/16 参照).

- 山中佳子・菊地正幸(2003):5 月 26 日宮城県沖地震(Mj7.0) 東京大学・地震火山情報 センター・EIC 地震学ノート (http://www.eic.eri.u-tokyo.ac.jp/EIC/EIC_News/03052 6n.html, 2017/2/16 参照), No. 135.
- 山中佳子 (2011):4月7日宮城沖地震(M7.4),名古屋大学地震 火山・防災研究センター リ アルタイム地震学・NGY 地震学ノート,No. 37, (http://www.seis.nagoya -u.ac.jp/sanchu/Seismo_Note/2011/NGY37.html, 2017/2/16 参照).