#### 3.2 活断層の稠密重力調査

#### (1)業務の内容

(a) 業務題目 活断層の稠密重力調査

(b) 担当者

| 所属機関       | 役職 | 氏名   |
|------------|----|------|
| 国立大学法人岩手大学 | 教授 | 越谷 信 |

(c) 業務の目的

本課題では解決すべき問題を、①逆断層・横ずれ断層の構造とすべり分配、②傾斜する 横ずれ断層の構造、③厚い堆積盆縁辺部での複雑な逆断層および断層関連褶曲の構造、④ 伏在活断層の検出、と定め、断層帯深部形状を推定する手法の確立を目的として、地球物 理学的および変動地形学・地質学的な調査研究観測を実施し、活断層・震源断層システムの 形状を具体的に明らかにすることを目指している。活断層を横断する稠密重力探査を行う とともに、密度構造モデルを推定し、活断層の地表~深部構造の推定に資する。

(d) 3 ヵ年の年次実施業務の要約

1) 平成 29 年度:

業務の目的で掲げた問題 ① 逆断層・横ずれ断層の構造とすべり分配の典型例として、 琵琶湖西岸断層帯・花折断層帯などを対象に、変動地形・地質構造を検討するとともに、 多チャンネル稠密固定展開・高エネルギー震源稠密発振による高分解能反射法地震探査(2 測線)を行い、本研究課題(サブテーマ 2)では、このうち琵琶湖西岸断層帯および花折 断層の両方を横切る測線に合わせて稠密重力調査を行った。

2) 平成 30 年度:

業務目的で掲げた問題①逆断層・横ずれ断層の構造とすべり分配の典型例として重力調 査を行った琵琶湖西岸断層帯・花折断層帯について、ブーゲー異常を計算し、地表地質や 活断層の位置との関連性を検討した。

業務の目的で掲げた問題②傾斜する横ずれ断層の構造の典型例として、中央構造線断層 帯(四国)などを対象に、変動地形・地質構造を検討するとともに、高分解能反射法地震 探査に合わせて重力調査を行った。測線は鮮新・更新統と上部白亜系が正断層の関係にあ る石鎚山地北縁を横断する測線で同様の調査を実施し、長大な中央構造線断層帯に沿った、 断層深部構造と活断層の構造的な変化を検討するのに資する資料として、断層系を横切り 方向でのブーゲー異常値の変化および予察的ではあるが、ブーゲー異常値に対応する地下 密度構造モデルを提供した。

3) 平成 31 年度:

業務の目的に掲げた問題③厚い堆積盆縁辺部での複雑な逆断層および断層関連褶曲の 典型例として、山形盆地など東北日本の新第三系・第四系堆積盆地を、また問題④伏在活 断層の検出を目的として、庄内平野などを対象として,変動地形・地質構造を検討すると ともに、高分解能反射法地震探査を行い,サブテーマ2では重力探査を行う。取得したデ ータの解析結果は、変動地形・地質構造解析とあわせて断層帯の浅部~深部形状と歪み解 消様式を検討するのに用いられる。

### (2) 平成 30 年度の成果

#### (a) 業務の要約

本課題では解決すべき上記の4つの問題のうち、問題①逆断層・横ずれ断層の構造とす べり分配の典型例として、琵琶湖西岸断層帯・花折断層帯などを対象にして、また、問題 ②傾斜する横ずれ断層の構造の典型例として、中央構造線断層帯(四国地域)を対象にし て、変動地形・地質構造を検討するとともに、高分解能反射法地震探査に合わせて重力調 査を行った。サブテーマ2では、問題①については、昨年度実施された調査結果に基づき、 ブーゲー異常値を算出した。また、問題②については、愛媛県西条市周辺で中央構造線を 横切る測線に合わせて標準で約200m、活断層付近で100mの測定間隔の稠密重力調査を 行った。その結果、同測線沿いにおけるブーゲー重力異常の変化が明らかになった。さら に、予察的に地下密度構造の関連を検討した。

#### (b) 業務の実施方法

問題①に関しては、滋賀県安曇川沿いに設定された花折断層および琵琶湖西岸断層帯上 寺断層を横切る測線(以下、「安曇川測線」)で重力異常値の一つであるブーゲー異常値を 計算した。ただし、地形補正は行っていない。ブーゲー補正は、通常の方法に従って得ら れた読み取り値に対して、器械高補正、ドリフト補正、緯度補正(正規重力値との差の算 出)、大気補正、フリーエア補正、ブーゲー補正を行うことにより算出した。なお、潮汐補 正は使用した重力計 CG-5 に内蔵されている補正機能によっている。ブーゲー補正の際に は古琵琶湖層群などの比較的新期の地質の影響を明瞭にするため、標準地層の密度を、1.9 g/cm<sup>3</sup>にした。これは、文部科学省研究開発局ほか(2007)により平成18年度に実施され た近江測線において、比較的連続性のよい反射面が認められる CDP1500 付近の 1000 m 以浅の領域が、前述の新期の地層に対応すると考え、その領域の P 波速度が 1.5 km/s 前 後の値を示すことから、Gardner et al. (1974)の P 波速度と密度の関係式に基づいて、1.9 g/cm<sup>3</sup>とした。

問題②に関して、稠密重力調査の測線は、中央構造線断層帯を横切る測線で、愛媛県西 条市付近に設定した。この測線(以下、「A測線」という)における重力の測定間隔は標準 を約 200 m とし、活断層周辺では約 100 m に設定した。重力測定にはシントレックス重 力計と RTK-DGPS を用いた(図 1、図 2)。



図 1 シントレックス重力計 CG-5。



図 2 Hemisphere 社製 RTK-GPS。

A測線の近隣地域に既知の重力基準点が存在しないため、愛媛県東温市内の既知基準点 として一等重力基準点(電子基準点(付))950433Aを用い、これと現地に設けた仮基準 点の間を閉塞測定し、現地基準点の絶対重力値を決定した。

測定点の位置情報は、GNSS測量により、取得データは、経度、緯度、標高およびGNSS 測量における諸情報(測定日時、水平標準偏差、垂直標準偏差、衛星数、PDOP値等)であ る。測定点における重力に関わる情報は、重力測定値、器械高、起伏の一番大きい方向50 m範囲のスケッチである。重力値は、1回あたり1分間60測定し、この平均値を求め、X方向 およびY方向の傾きのtiltの値は10を越えないようにし、潮力補正は組み込まれたソフトウ ェアを使用した。通常の測定点では2回測定し、両者の平均値の差が20µGalを越えないよ うにし、現地基準点では、3回測定し、それらの平均値の差が30µGalを越えないようにし た。

得られた読み取り値より、通常の方法に従ってブーゲー補正を求めた。得られた読み取 り値に対して、器械高補正、ドリフト補正、緯度補正(正規重力値との差の算出)、大気 補正、フリーエア補正、ブーゲー補正を行うことにより算出した。ただし、地形補正は行 っていない。ブーゲー補正の際に、地域は離れているが、伊藤ほか(1996)と同様に本地 域の標準地層の密度を、2.5 g/cm<sup>3</sup>にした。

#### (c) 業務の成果

問題①に関して、安曇川測線における重力測定点を図3に示す。



図3 安曇川測線の重力測定点位置図。 安曇川測線の重力測定点を図中の赤丸で 示す。地質情報は、中江ほか、2001;石田 ほか、1984;木村ほか、1998;中江ほか、 1998;木村ほか、2001;岡田ほか、2008; 宮内ほか、2004;堤ほか、2004に基づく。

安曇川測線における重力測定点の座標、各測定点での重力計の器械高および地形補正を していないブーゲー異常値をそれぞれ表1、表2および表3に示す。なお、表1および表 2 は平成29年度の報告書からの再掲である。器械高は測定地点の地表から重力計の底面 までの高さである。計算に当たっては、この器械高に、重力計内部でのセンサーまでの高 さ0.089mを加える必要がある。また、安曇川測線におけるブーゲー異常の変化を図4に 示す。図4の横軸は測線西端からの東方向への距離を示す。

| 表1(その1) 安曇川測線 | における重力測定点の位置。 |
|---------------|---------------|
|---------------|---------------|

| 測定点番号  | X座標(m)      | Y座標(m)     | 緯度(゜)        | 経度(゜)        | 標高(m)    |
|--------|-------------|------------|--------------|--------------|----------|
| G10001 | -71385. 421 | -989. 003  | 35.35655114  | 135. 9891176 | 117. 407 |
| G1     | -73486. 173 | 4119.047   | 35.33760650  | 136. 0453128 | 97. 470  |
| G2     | -73418. 456 | 3931.385   | 35. 33821767 | 136. 0432487 | 98.004   |
| G3     | -73351. 139 | 3743. 687  | 35. 33882521 | 136. 0411841 | 98.622   |
| G4     | -73261.570  | 3568. 168  | 35. 33963324 | 136. 0392537 | 99. 320  |
| G5     | -73145. 850 | 3389. 646  | 35.34067699  | 136. 0372902 | 97. 980  |
| G6     | -73085. 633 | 3199. 020  | 35. 34122043 | 136. 0351933 | 100. 180 |
| G7     | -73002. 295 | 3025. 902  | 35. 34197220 | 136. 0332891 | 101.119  |
| G8     | -72841.590  | 2899. 312  | 35. 34342120 | 136. 0318970 | 101.947  |
| G9     | -72687. 264 | 2773. 568  | 35. 34481269 | 136. 0305142 | 102. 581 |
| G10    | -72543. 754 | 2756. 243  | 35. 34610637 | 136. 0303240 | 96.071   |
| G11    | -72435. 789 | 2590. 766  | 35. 34708003 | 136. 0285038 | 97. 122  |
| G12    | -72294. 162 | 2409. 262  | 35. 34835714 | 136. 0265073 | 97. 951  |
| G13    | -72046. 668 | 2275. 023  | 35. 35058842 | 136. 0250311 | 98. 393  |
| G14    | -72024. 426 | 2068. 791  | 35. 35078936 | 136. 0227620 | 99. 343  |
| G15    | -72013. 164 | 1879. 127  | 35. 35089126 | 136. 0206753 | 100. 445 |
| G16    | -71980. 398 | 1639. 045  | 35. 35118704 | 136. 0180338 | 102.060  |
| G17    | -72039. 403 | 1454. 170  | 35. 35065544 | 136. 0159996 | 103.090  |
| G18    | -72023. 376 | 1285. 090  | 35.35080014  | 136. 0141393 | 103. 556 |
| G19    | -72027. 502 | 1084. 938  | 35.35076319  | 136. 0119371 | 104. 486 |
| G20    | -72005. 644 | 886. 375   | 35.35096042  | 136. 0097524 | 107. 843 |
| G21    | -71910. 542 | 708. 946   | 35. 35181783 | 136. 0078003 | 107. 486 |
| G22    | -71825. 608 | 530. 764   | 35. 35258355 | 136. 0058399 | 109. 207 |
| G23    | -71914. 177 | 354. 019   | 35. 35178525 | 136. 0038952 | 108. 581 |
| G24    | -71856. 974 | 158. 832   | 35. 35230094 | 136. 0017476 | 108.895  |
| G25    | -71793. 263 | -30. 280   | 35. 35287526 | 135. 9996668 | 109. 391 |
| G26    | -71728. 400 | -222. 779  | 35. 35345992 | 135. 9975488 | 110. 157 |
| G27    | -71664. 310 | -412. 516  | 35. 35403758 | 135. 9954611 | 111.156  |
| G28    | -71599. 031 | -606. 541  | 35.35462592  | 135. 9933262 | 112. 290 |
| G29    | -71529. 574 | -799. 569  | 35. 35525189 | 135. 9912022 | 113. 920 |
| G30    | -71677. 627 | -932. 592  | 35. 35391719 | 135. 9897387 | 116.645  |
| G31    | -71970. 018 | -1076. 867 | 35. 35128137 | 135. 9881516 | 119. 467 |
| G32    | -71940. 671 | -1269. 810 | 35.35154568  | 135. 9860287 | 121. 497 |
| G33    | -71863.968  | -1444. 852 | 35.35223686  | 135. 9841026 | 121.401  |
| G34    | -71704. 301 | -1566. 708 | 35. 35367595 | 135. 9827616 | 120. 638 |

| 測定点番号 | X座標(m)      | Y座標(m)     | 緯度(゜)        | 経度(゜)        | 標高(m)    |
|-------|-------------|------------|--------------|--------------|----------|
| G35   | -71636. 003 | -1735. 188 | 35. 35429132 | 135. 9809076 | 118. 444 |
| G36   | -71659. 199 | -1918. 127 | 35. 35408190 | 135. 9788948 | 119. 087 |
| G37   | -71560. 159 | -2090. 493 | 35. 35497432 | 135. 9769980 | 119. 688 |
| G38   | -71446. 417 | -2274. 170 | 35. 35599921 | 135. 9749767 | 121. 377 |
| G39   | -71320. 645 | -2432. 446 | 35. 35713257 | 135. 9732347 | 123. 374 |
| G40   | -71166. 342 | -2559. 617 | 35. 35852317 | 135. 9718349 | 123. 661 |
| G41   | -71027. 419 | -2704. 664 | 35. 35977507 | 135. 9702384 | 124. 813 |
| G42   | -70890. 749 | -2849. 728 | 35. 36100664 | 135. 9686417 | 126. 389 |
| G43   | -70790. 930 | -3018. 702 | 35. 36190593 | 135. 9667819 | 126. 238 |
| G44   | -70779. 791 | -3216. 510 | 35. 36200572 | 135. 9646052 | 127. 708 |
| G45   | -70814. 467 | -3416. 491 | 35. 36169248 | 135. 9624047 | 130. 931 |
| G46   | -70896. 250 | -3582. 148 | 35. 36095469 | 135. 9605822 | 131. 491 |
| G47   | -70806. 718 | -3760. 639 | 35. 36176109 | 135. 9586177 | 131. 229 |
| G48   | -70682. 182 | -3922. 802 | 35. 36288306 | 135. 9568326 | 132. 086 |
| G49   | -70531.896  | -4057. 178 | 35. 36423723 | 135. 9553532 | 133. 958 |
| G50   | -70393. 185 | -4200. 972 | 35. 36548700 | 135. 9537701 | 142. 021 |
| G51   | -70336. 253 | -4391.818  | 35. 36599937 | 135. 9516696 | 149. 680 |
| G52   | -70358. 534 | -4529. 265 | 35. 36579791 | 135. 9501572 | 146. 136 |
| G53   | -70259. 829 | -4715. 755 | 35. 36668680 | 135. 9481044 | 145. 109 |
| G54   | -70359. 097 | -4905. 216 | 35. 36579106 | 135. 9460200 | 155. 180 |
| G55   | -70433. 985 | -5078. 499 | 35. 36511514 | 135. 9441135 | 161.032  |
| G56   | -70279. 715 | -5168. 111 | 35. 36650530 | 135. 9431264 | 155. 503 |
| G57   | -70166. 891 | -5334. 055 | 35. 36752144 | 135. 9412995 | 156. 891 |
| G58   | -70050. 144 | -5473. 080 | 35. 36857307 | 135. 9397688 | 157. 778 |
| G59   | -69892. 838 | -5578. 692 | 35. 36999047 | 135. 9386055 | 148. 974 |
| G60   | -69982.066  | -5774. 777 | 35. 36918504 | 135. 9364481 | 146. 657 |
| G61   | -69994. 170 | -5968. 528 | 35. 36907479 | 135. 9343160 | 147. 740 |
| G62   | -69976. 573 | -6182. 728 | 35. 36923211 | 135. 9319586 | 153. 416 |
| G63   | -70129. 024 | -6318. 357 | 35. 36785704 | 135. 9304672 | 159. 988 |
| G64   | -70993. 115 | -6393. 656 | 35. 36006748 | 135. 9296453 | 180. 016 |
| G65   | -70969. 931 | -6586. 520 | 35. 36027521 | 135. 9275228 | 181.075  |
| G66   | -71012. 678 | -6766. 448 | 35. 35988868 | 135. 9255433 | 182. 115 |
| G67   | -71033. 989 | -6957.896  | 35.35969526  | 135. 9234368 | 181. 283 |
| G68   | -71111.079  | -7092. 333 | 35. 35899941 | 135. 9219582 | 180. 772 |
| G69   | -71464. 958 | -7263. 020 | 35. 35580825 | 135. 9200831 | 170. 921 |

# 表1(その2) 安曇川測線における重力測定点の位置。

| 測定点番号 | X座標(m)      | Y座標(m)      | 緯度( <sup>°</sup> ) | 経度( <sup>°</sup> ) | 標高(m)    |
|-------|-------------|-------------|--------------------|--------------------|----------|
| G70   | -71281 333  | -7401 059   | 35 35746246        | 135 9185626        | 171 929  |
| G71   | -71091, 138 | -7394, 143  | 35, 35917697       | 135, 9186370       | 174.868  |
| G72   | -70907.767  | -7407.817   | 35. 36082981       | 135. 9184848       | 183. 031 |
| G73   | -70705. 862 | -7366. 437  | 35. 36265013       | 135. 9189383       | 185. 466 |
| G74   | -70518. 325 | -7252.677   | 35. 36434145       | 135. 9201885       | 179. 202 |
| G75   | -70319. 457 | -7295. 170  | 35. 36613377       | 135. 9197191       | 179.033  |
| G76   | -70152. 279 | -7373. 136  | 35. 36764017       | 135. 9188596       | 180. 808 |
| G77   | -70136. 223 | -7568. 128  | 35. 36778345       | 135. 9167136       | 183. 780 |
| G78   | -70312. 933 | -7641.401   | 35. 36618999       | 135. 9159089       | 192. 882 |
| G79   | -70378. 142 | -7812. 370  | 35. 36560086       | 135. 9140281       | 193. 896 |
| G80   | -70419. 970 | -8009. 041  | 35. 36522226       | 135. 9118642       | 196. 989 |
| G81   | -70499. 422 | -8196. 570  | 35. 36450454       | 135. 9098014       | 194. 991 |
| G82   | -70301.011  | -8283. 925  | 35. 36629233       | 135. 9088380       | 196. 902 |
| G83   | -70130. 657 | -8394. 013  | 35. 36782701       | 135. 9076248       | 195. 131 |
| G84   | -69990. 823 | -8534. 027  | 35. 36908631       | 135. 9060825       | 198. 373 |
| G85   | -69976. 327 | -8768. 033  | 35. 36921495       | 135. 9035071       | 201. 774 |
| G86   | -69893. 691 | -8964. 070  | 35. 36995811       | 135. 9013488       | 215. 816 |
| G87   | -69843. 959 | -9152. 489  | 35. 37040469       | 135. 8992747       | 218. 954 |
| G88   | -69852.066  | -9341. 786  | 35. 37032986       | 135. 8971915       | 212. 504 |
| G89   | -69767. 583 | -9543. 689  | 35. 37108949       | 135. 8949685       | 211. 364 |
| G90   | -69793. 531 | -9741.631   | 35. 37085368       | 135. 8927904       | 211.660  |
| G91   | -69719. 494 | -9972. 481  | 35. 37151878       | 135. 8902490       | 214. 948 |
| G92   | -69623. 118 | -10149. 593 | 35. 37238574       | 135. 8882986       | 215. 308 |
| G93   | -69523. 982 | -10310. 670 | 35. 37327772       | 135. 8865246       | 219. 179 |
| G94   | -69402. 553 | -10476. 739 | 35. 37437057       | 135. 8846954       | 224. 596 |
| G95   | -69281.633  | -10636. 075 | 35. 37545888       | 135. 8829402       | 231. 231 |
| G101  | -72922. 195 | 2959. 438   | 35. 34269444       | 136. 0325582       | 101.575  |
| G102  | -72755. 696 | 2838. 568   | 35. 34419564       | 136. 0312290       | 102. 298 |
| G103  | -72479. 263 | 2677. 828   | 35. 34668792       | 136. 0294615       | 96. 865  |
| G104  | -72359. 984 | 2493. 663   | 35. 34776360       | 136. 0274357       | 97. 958  |
| G105  | -72066. 657 | 2374. 390   | 35. 35040800       | 136. 0261243       | 97. 476  |
| G106  | -72034. 885 | 2168. 293   | 35. 35069487       | 136. 0238568       | 99. 282  |
| G107  | -72016.018  | 1987.979    | 35. 35086532       | 136. 0218729       | 99.637   |
| G108  | -72005. 886 | 1755. 331   | 35. 35095709       | 136. 0193132       | 101.290  |
| G109  | -72034. 249 | 1528. 703   | 35. 35070179       | 136.0168197        | 102.677  |

表1(その3) 安曇川測線における重力測定点の位置。

| 测台上亚口  | 四城古  | 测台上五日 | 四掃古  | 测台上亚口 | 四提古  |
|--------|------|-------|------|-------|------|
| 測正只香亏  |      | 測正只香亏 |      | 測正只香亏 |      |
| G90001 | 0.17 | G35   | 0.17 | G/1   | 0.17 |
| G10001 | 0.16 | G36   | 0.18 | G/2   | 0.18 |
| G1     | 0.16 | G3 /  | 0.18 | G/3   | 0.17 |
| G2     | 0.17 | G38   | 0.18 | G/4   | 0.16 |
| G3     | 0.17 | G39   | 0.17 | G/5   | 0.17 |
| G4     | 0.17 | G40   | 0.17 | G/6   | 0.17 |
| G5     | 0.18 | G41   | 0.17 | G77   | 0.17 |
| G6     | 0.16 | G42   | 0.17 | G78   | 0.17 |
| G7     | 0.17 | G43   | 0.17 | G79   | 0.17 |
| G8     | 0.16 | G44   | 0.17 | G80   | 0.18 |
| G9     | 0.14 | G45   | 0.17 | G81   | 0.17 |
| G10    | 0.17 | G46   | 0.17 | G82   | 0.17 |
| G11    | 0.17 | G47   | 0.18 | G83   | 0.17 |
| G12    | 0.17 | G48   | 0.16 | G84   | 0.17 |
| G13    | 0.17 | G49   | 0.17 | G85   | 0.16 |
| G14    | 0.17 | G50   | 0.18 | G86   | 0.16 |
| G15    | 0.17 | G51   | 0.17 | G87   | 0.17 |
| G16    | 0.18 | G52   | 0.18 | G88   | 0.16 |
| G17    | 0.17 | G53   | 0.17 | G89   | 0.17 |
| G18    | 0.17 | G54   | 0.18 | G90   | 0.17 |
| G19    | 0.17 | G55   | 0.17 | G91   | 0.16 |
| G20    | 0.16 | G56   | 0.17 | G92   | 0.17 |
| G21    | 0.17 | G57   | 0.17 | G93   | 0.17 |
| G22    | 0.17 | G58   | 0.16 | G94   | 0.16 |
| G23    | 0.18 | G59   | 0.17 | G95   | 0.17 |
| G24    | 0.17 | G60   | 0.17 | G101  | 0.14 |
| G25    | 0.17 | G61   | 0.18 | G102  | 0.15 |
| G26    | 0.17 | G62   | 0.17 | G103  | 0.17 |
| G27    | 0.17 | G63   | 0.17 | G104  | 0.17 |
| G28    | 0.17 | G64   | 0.17 | G105  | 0.17 |
| G29    | 0.17 | G65   | 0.16 | G106  | 0.17 |
| G30    | 0.17 | G66   | 0.17 | G107  | 0.18 |
| G31    | 0.17 | G67   | 0.17 | G108  | 0.17 |
| G32    | 0.18 | G68   | 0.17 | G109  | 0.16 |
| G33    | 0.17 | G69   | 0.18 |       | •    |
| G34    | 0.18 | G70   | 0.17 |       |      |

表 2 安曇川測線における重力測定点での重力計の器械高。

|       |                 | 1               |       |           |         |
|-------|-----------------|-----------------|-------|-----------|---------|
| 測定点番号 | 絶対重力値           | ブーゲー異常値         | 測定点番号 | 絶対重力値     | ブーゲー異常値 |
|       | (mGa <b>l</b> ) | (mGa <b>l</b> ) |       | (mGal)    | (mGal)  |
| G1    | 979694.35       | -44.97          | G53   | 979706.09 | -24.81  |
| G2    | 979694.40       | -44.85          | G54   | 979704.45 | -24.08  |
| G3    | 979694.52       | -44.64          | G55   | 979703.33 | -23.80  |
| G4    | 979694.64       | -44.44          | G56   | 979703.98 | -24.53  |
| G5    | 979695.26       | -44.21          | G57   | 979703.97 | -24.31  |
| G6    | 979695.15       | -43.86          | G58   | 979703.90 | -24.27  |
| G7    | 979695.46       | -43.40          | G59   | 979704.96 | -25.34  |
| G8    | 979695.75       | -43.05          | G60   | 979706.49 | -24.27  |
| G9    | 979696.15       | -42.62          | G61   | 979706.53 | -23.97  |
| G10   | 979697.75       | -42.62          | G62   | 979705.51 | -23.72  |
| G11   | 979698.32       | -41.89          | G63   | 979704.41 | -23.19  |
| G12   | 979698.85       | -41.28          | G64   | 979699.33 | -23.03  |
| G13   | 979699.21       | -41.01          | G65   | 979699.25 | -22.88  |
| G14   | 979699.95       | -40.06          | G66   | 979699.21 | -22.65  |
| G15   | 979700.70       | -39.07          | G67   | 979699.85 | -22.18  |
| G16   | 979701.80       | -37.63          | G68   | 979700.22 | -21.87  |
| G17   | 979702.32       | -36.83          | G69   | 979699.44 | -24.63  |
| G18   | 979703.40       | -35.66          | G70   | 979700.91 | -23.07  |
| G19   | 979704.89       | -33.95          | G71   | 979701.94 | -21.52  |
| G20   | 979705.29       | -32.79          | G72   | 979700.98 | -20.75  |
| G21   | 979705.06       | -33.19          | G73   | 979700.88 | -20.44  |
| G22   | 979704.61       | -33.30          | G74   | 979701.92 | -20.98  |
| G23   | 979704.97       | -33.02          | G75   | 979702.23 | -20.86  |
| G24   | 979704.90       | -33.06          | G76   | 979701.84 | -20.98  |
| G25   | 979704.94       | -32.96          | G77   | 979701.19 | -20.96  |
| G26   | 979704.88       | -32.89          | G78   | 979700.80 | -19.13  |
| G27   | 979704.73       | -32.86          | G79   | 979700.41 | -19.24  |
| G28   | 979704.67       | -32.71          | G80   | 979698.94 | -19.97  |
| G29   | 979704.70       | -32.37          | G81   | 979701.00 | -18.31  |
| G30   | 979704.01       | -32.32          | G82   | 979700.13 | -18.88  |
| G31   | 979703.26       | -32.19          | G83   | 979702.12 | -17.44  |
| G32   | 979703.47       | -31.55          | G84   | 979702.14 | -16.78  |
| G33   | 979704.22       | -30.88          | G85   | 979701.98 | -16.17  |
| G34   | 979704.88       | -30.51          | G86   | 979699.68 | -15.32  |
| G35   | 979706.00       | -29.95          | G87   | 979698.94 | -15.39  |
| G36   | 979706.43       | -29.35          | G88   | 979700.14 | -15.66  |
| G37   | 979706.42       | -29.30          | G89   | 979700.47 | -15.65  |
| G38   | 979706.41       | -29.01          | G90   | 979700.46 | -15.57  |
| G39   | 979706.80       | -28.26          | G91   | 979699.61 | -15.72  |
| G40   | 979707.81       | -27.30          | G92   | 979699.79 | -15.53  |
| G41   | 979707.70       | -27.26          | G93   | 979699.37 | -15.14  |
| G42   | 979706.84       | -27.86          | G94   | 979697.83 | -15.54  |
| G43   | 979707.01       | -27.80          | G95   | 979696.50 | -15.44  |
| G44   | 979707.22       | -27.26          | G101  | 979695.60 | -43.21  |
| G45   | 979706.85       | -26.87          | G102  | 979695.90 | -42.88  |
| G46   | 979706.65       | -26.88          | G103  | 979698.06 | -42.17  |
| G47   | 979706.40       | -27.26          | G104  | 979698.65 | -41.42  |
| G48   | 979706.66       | -26.90          | G105  | 979699.31 | -41.10  |
| G49   | 979706.85       | -26.40          | G106  | 979699.60 | -40.43  |
| G50   | 979706.00       | -25.51          | G107  | 979700.34 | -39.61  |
| G51   | 979704.97       | -24.83          | G108  | 979701.21 | -38.38  |
| G52   | 979705.79       | -24.81          | G109  | 979701.99 | -37.26  |

| 表 3 | 安曇川測線 | 重力測定点におい | けるブ | ーゲー異常 | 値(地形補正な | し)。 |
|-----|-------|----------|-----|-------|---------|-----|
|-----|-------|----------|-----|-------|---------|-----|



図4 安曇川測線の重力異常。

図4において、琵琶湖西岸断層帯付近やや西側から東方に向かってブーゲー異常の減少 の仕方が大きい。これは、東側のより小さい密度の地層と西側のより密度の大きい地層の 境界が西に向かって傾斜すること示唆する。また、花折断層の西側ではブーゲー異常値が ほとんど変化していないが、これも岩相変化を反映している可能性がある。

問題②に関して、既知重力基準点は愛媛県東温市内の一等重力基準点(電子基準点(付)) 950433Aを用いた。同点の位置を図5に、諸元を表4に示す。



図 5 一等重力点(電子基準点(付))950433Aの位置(赤丸内)。 地形図は国土地理院地図を使用。

表 4 一等重力点(電子基準点(付))の諸元。 国土地理院ホームページ基準点成果閲覧サービスによる。

| 一等重力点(電子基準点(付)) | 950433A          |
|-----------------|------------------|
| 基準点コード          | G1E000950433A    |
| 等級種別            | 一等重力点(電子基準点(付))  |
| 基準点名            | 950433A          |
| 20万分の1地勢図名      | 松山               |
| 5万分の1地形図名       | 松山南部             |
| 緯度              | 33° 47'47''.3652 |
| 経度              | 132° 54'41".9148 |
| 標高 (m)          | 132.417          |
| 重力鉛直勾配(mGal/m)  | 0.0000           |
| 重力值(mGal)       | 979586.62        |
| ブーゲー異常値         | -15.82           |
| エポック            | 0                |
| 作業内容            | 改算               |
| 作業年月日           | 20161201         |

一等重力点 950433A は、本調査の測線から 30 km 程度離れているため(図 6)、測線 A 近傍、新兵衛大橋付近に仮重力基準点(6001)を設けた(図 6、7)。仮重力点 6001 における絶対重力値の算定は、一等重力点 950433A との閉合測定を行うことにより求めた。その際、重力計読み値等のデータを表 5 に示す。



図 6 一等重力点(電子基準点(付)) 950433A と仮重力点 6001 の位置関係。 地形図は国土地理院地図を使用。



図 7 仮重力点 6001 の位置。 国土地理院発行 25000 分の1 数値地図「高知」より「西条」・「西条北部」を使用。

表 5 一仮重力点 6001 と一等重力点 950433A との閉合重力測定値。

| 測定点番号 | 重力読み値<br>(mGal) | 標準偏差  | 傾きX  | 傾きY  | 潮汐補正<br>(mGa <b>l</b> ) | 測定時間<br>(秒) | 測定時刻<br>UTC | 測定日<br>UTC | 器械高<br>(m) | 備考               |
|-------|-----------------|-------|------|------|-------------------------|-------------|-------------|------------|------------|------------------|
| 6000  | 4689.069        | 0.023 | 1.1  | 0.1  | 0.039                   | 60          | 0:33:53     | 2018/11/20 | 0.163      | 一等重力点<br>950433A |
| 6001  | 4728.923        | 0.049 | -0.5 | -2.1 | -0.012                  | 60          | 1:56:21     | 2018/11/20 | 0.158      | 仮重力点             |
| 6000  | 4689.076        | 0.025 | -2.6 | -1.5 | -0.039                  | 60          | 2:50:34     | 2018/11/20 | 0.160      | 一等重力点<br>950433A |

仮重力基準点 6001 の諸元は以下の通りである。

- ・緯度 北緯 33.9103354027778 (度)
- ・経度 東経 133.132710483333 (度)
- ・標高 4.665 (m)
- ・絶対重力値 979626.47 (mGal)

なお、閉合重力測定は各点で少なくとも5回以上行い、より安定したデータを採用している。

中央構造線断層帯測線 A における重力測定は、58 点で行い、測定間隔は測線沿いに おおむね 200 m を標準とし、活断層周辺では一部 100 m 間隔とした。重力測定は、一 日の測定開始時と終了時に仮基準点において測定を実施し、器械の内部的理由で発生す るドリフトの影響を少なくするようにした。測定点の位置を図 8 に、測線 A と地質との 位置関係を図 9 に、活断層との位置関係を図 10 に示す。また、測定点の位置情報を表 6 その1 およびその2 に、各測定点での重力計読み値、器械高等を表 7 その1 およびその 2 に示す。測線 A は、三波川コンプレックスと後期白亜紀和泉層群の境界をなす中央構 造線、和泉層群と鮮新世~更新世岡村層の境界をなす岡村断層、および小松断層を横切 るように設定した。



図 8 中央構造線断層系 A 測線の 重力測定点。国土地理院発行 25000分の1数値地図「高知」よ り「西条」・「西条北部」を使用。



図 9 中央構造線断層系 A 測線の重力測定点と地質の関係。 地質情報は、地質調査総合センター(2018)1:200,000 地質図幅「高知第 2 版」による。



図 10 中央構造線断層系 A 測線の重力測定点と活断層の関係。活断層情報は、国土地理 院発行都市圏活断層図「西条」による。

| 測定点番号 | 4系X座標 (m) | 4系Y座標 (m)  | 緯度(゜)       | 経度(°)        | 標高 (m)  |
|-------|-----------|------------|-------------|--------------|---------|
| 6002  | 94611.436 | -32865.094 | 33.85260463 | 133.14483614 | 141.533 |
| 6003  | 94773.020 | -32892.736 | 33.85406065 | 133.14453139 | 136.372 |
| 6004  | 94914.725 | -32850.353 | 33.85533962 | 133.14498413 | 134.484 |
| 6005  | 94992.496 | -33102.896 | 33.85603293 | 133.14225201 | 127.384 |
| 6006  | 95137.236 | -33198.325 | 33.85733495 | 133.14121525 | 119.298 |
| 6007  | 95290.379 | -33060.480 | 33.85872005 | 133.14269921 | 123.152 |
| 6008  | 95407.266 | -32871.264 | 33.85977984 | 133.14473976 | 125.585 |
| 6009  | 95613.837 | -32789.397 | 33.86164488 | 133.14561684 | 131.561 |
| 6010  | 95683.506 | -33160.689 | 33.86226143 | 133.14160141 | 144.216 |
| 6011  | 95816.171 | -33325.585 | 33.86345238 | 133.13981423 | 152.521 |
| 6012  | 95890.092 | -33498.059 | 33.86411341 | 133.13794734 | 166.305 |
| 6013  | 96047.904 | -33517.722 | 33.86553565 | 133.13772881 | 168.149 |
| 6014  | 96342.406 | -33579.889 | 33.86818897 | 133.13704567 | 175.541 |
| 6015  | 96552.623 | -33608.032 | 33.87008344 | 133.13673346 | 192.882 |
| 6016  | 96666.431 | -33350.338 | 33.87111774 | 133.13951449 | 181.498 |
| 6017  | 96843.517 | -33452.271 | 33.87271116 | 133.13840598 | 164.464 |
| 6018  | 97047.129 | -33373.561 | 33.87454946 | 133.13924903 | 152.560 |
| 6019  | 97238.385 | -33485.721 | 33.87627031 | 133.13802938 | 142.772 |
| 6020  | 97427.167 | -33622.562 | 33.87796806 | 133.13654298 | 131.079 |
| 6021  | 97509.268 | -33884.126 | 33.87869992 | 133.13371238 | 120.893 |
| 6022  | 97699.157 | -33958.340 | 33.88040961 | 133.13290281 | 112.444 |
| 6023  | 97823.658 | -34006.552 | 33.88153059 | 133.13237683 | 107.259 |
| 6024  | 97934.195 | -33974.400 | 33.88252825 | 133.13272013 | 101.899 |
| 6025  | 98053.073 | -34040.643 | 33.88359794 | 133.13199942 | 94.775  |
| 6026  | 98130.641 | -34185.623 | 33.88429262 | 133.13042911 | 74.565  |
| 6027  | 98264.784 | -34210.854 | 33.88550126 | 133.13015113 | 70.846  |
| 6028  | 98418.652 | -34332.858 | 33.88688459 | 133.12882618 | 49.628  |
| 6029  | 98540.969 | -34288.368 | 33.88798888 | 133.12930238 | 40.265  |
| 6059  | 98650.823 | -34205.501 | 33.88898203 | 133.13019398 | 32.424  |

表 6 (その 1) 中央構造線断層系測線 A における重力測定点の位置情報。

| 表 6(その 2) 中央構造線断層系測線 A における重力測 | 定点の位置情報。 |
|--------------------------------|----------|
|--------------------------------|----------|

| 測定点番号 | 4系X座標 (m)  | 4系Y座標 (m)  | 緯度(°)       | 経度(°)        | 標高 (m) |
|-------|------------|------------|-------------|--------------|--------|
| 6030  | 98716.552  | -34154.250 | 33.88957632 | 133.13074550 | 29.795 |
| 6058  | 98835.883  | -34101.968 | 33.89065392 | 133.13130611 | 24.684 |
| 6031  | 98931.867  | -34076.734 | 33.89152015 | 133.13157520 | 23.801 |
| 6057  | 99028.453  | -34051.401 | 33.89239180 | 133.13184534 | 20.798 |
| 6032  | 99154.534  | -34027.467 | 33.89352935 | 133.13209922 | 17.648 |
| 6056  | 99231.731  | -34006.919 | 33.89422603 | 133.13231839 | 15.287 |
| 6033  | 99315.431  | -34002.122 | 33.89498084 | 133.13236702 | 12.718 |
| 6034  | 99415.660  | -34176.658 | 33.89587888 | 133.13047606 | 15.042 |
| 6035  | 99569.785  | -34170.636 | 33.89726869 | 133.13053518 | 11.771 |
| 6036  | 99696.775  | -34183.483 | 33.89841324 | 133.13039134 | 6.567  |
| 6037  | 99892.266  | -34222.320 | 33.90017456 | 133.12996381 | 6.254  |
| 6038  | 100078.365 | -34250.176 | 33.90185156 | 133.12965536 | 3.582  |
| 6039  | 100256.423 | -34276.452 | 33.90345610 | 133.12936430 | 1.975  |
| 6040  | 100393.712 | -34291.429 | 33.90469343 | 133.12919699 | 0.897  |
| 6041  | 100543.357 | -34291.110 | 33.90604267 | 133.12919460 | 1.816  |
| 6042  | 100686.409 | -34293.491 | 33.90733237 | 133.12916327 | 5.733  |
| 6043  | 100799.961 | -34198.249 | 33.90835927 | 133.13018874 | 5.497  |
| 6044  | 100900.769 | -34114.805 | 33.90927088 | 133.13108715 | 5.004  |
| 6045  | 101092.841 | -33947.756 | 33.91100803 | 133.13288614 | 6.177  |
| 6046  | 101229.204 | -33887.308 | 33.91223944 | 133.13353455 | 4.434  |
| 6047  | 101363.222 | -33821.708 | 33.91344988 | 133.13423879 | 4.444  |
| 6048  | 101506.237 | -33780.298 | 33.91474065 | 133.13468111 | 4.393  |
| 6049  | 101653.980 | -33747.712 | 33.91607377 | 133.13502783 | 4.641  |
| 6050  | 101797.415 | -33791.450 | 33.91736560 | 133.13454930 | 4.713  |
| 6051  | 101939.644 | -33838.107 | 33.91864646 | 133.13403923 | 4.532  |
| 6052  | 102068.610 | -33916.347 | 33.91980672 | 133.13318810 | 2.918  |
| 6053  | 102194.247 | -33997.027 | 33.92093688 | 133.13231068 | 4.043  |
| 6054  | 102319.182 | -34078.174 | 33.92206069 | 133.13142821 | 4.109  |
| 6055  | 102426.270 | -34147.631 | 33.92302396 | 133.13067285 | 4.145  |

| 表 7(そ | の1) 中: | 夬構造線断層 | 系測線 A | における | る重力測 | 定結果。 |
|-------|--------|--------|-------|------|------|------|
|-------|--------|--------|-------|------|------|------|

| 河(구 년 종 년 | 重力読み値    |       | IFF X V | 店・ハ  | 潮汐補正   | 測定時間 | 測定時刻     | 測定日        | 器械高   | 144: -1 <b>7</b> . |
|-----------|----------|-------|---------|------|--------|------|----------|------------|-------|--------------------|
| 測正息番亏     | (mGal)   | 標準偏差  | 傾さ入     | 傾さY  | (mGal) | (秒)  | UTC      | UTC        | (m)   | 佩考                 |
| 6001      | 4728.923 | 0.049 | -0.5    | -2.1 | -0.012 | 60   | 1:56:21  | 2018/11/20 | 0.158 | 仮重力点               |
| 6002      | 4704.736 | 0.039 | -0.6    | -2.0 | -0.040 | 60   | 5:48:19  | 2018/11/20 | 0.174 |                    |
| 6003      | 4707.143 | 0.020 | -3.8    | -1.0 | -0.033 | 60   | 6:07:22  | 2018/11/20 | 0.161 |                    |
| 6004      | 4708.835 | 0.024 | -1.4    | -0.5 | -0.025 | 60   | 6:24:30  | 2018/11/20 | 0.163 |                    |
| 6005      | 4709.871 | 0.020 | 2.3     | -1.2 | -0.007 | 60   | 7:01:24  | 2018/11/20 | 0.173 |                    |
| 6006      | 4711.048 | 0.022 | -4.1    | 1.6  | 0.004  | 60   | 7:26:09  | 2018/11/20 | 0.161 |                    |
| 6001      | 4729.213 | 0.060 | 1.5     | -0.1 | 0.021  | 60   | 8:03:12  | 2018/11/20 | 0.163 | 仮重力点               |
| 6001      | 4729.709 | 0.051 | -0.7    | -0.2 | 0.112  | 60   | 23:23:40 | 2018/11/20 | 0.163 | 仮重力点               |
| 6007      | 4712.217 | 0.046 | 0.3     | -2.0 | 0.085  | 60   | 0:19:15  | 2018/11/21 | 0.164 |                    |
| 6008      | 4712.593 | 0.023 | 0.1     | -0.9 | 0.077  | 60   | 0:30:09  | 2018/11/21 | 0.165 |                    |
| 6009      | 4713.694 | 0.013 | 5.2     | 1.4  | 0.050  | 60   | 1:06:56  | 2018/11/21 | 0.180 |                    |
| 6010      | 4711.042 | 0.012 | 2.2     | -2.4 | 0.038  | 60   | 1:21:38  | 2018/11/21 | 0.143 |                    |
| 6011      | 4708.442 | 0.027 | 0.5     | -1.1 | 0.028  | 60   | 1:35:22  | 2018/11/21 | 0.164 |                    |
| 6013      | 4704.249 | 0.017 | 0.1     | -1.6 | 0.012  | 60   | 1:54:53  | 2018/11/21 | 0.165 |                    |
| 6012      | 4704.990 | 0.015 | 0.2     | 0.1  | 0.000  | 60   | 2:12:00  | 2018/11/21 | 0.160 |                    |
| 6014      | 4703.436 | 0.031 | 0.9     | -0.9 | -0.010 | 60   | 2:23:44  | 2018/11/21 | 0.177 |                    |
| 6015      | 4700.634 | 0.026 | 2.3     | 0.0  | -0.034 | 60   | 2:58:33  | 2018/11/21 | 0.164 |                    |
| 6016      | 4703.327 | 0.017 | 0.0     | -1.4 | -0.040 | 60   | 3:09:14  | 2018/11/21 | 0.180 |                    |
| 6017      | 4706.722 | 0.029 | -1.1    | -0.8 | -0.074 | 60   | 4:42:16  | 2018/11/21 | 0.112 |                    |
| 6018      | 4708.406 | 0.018 | -5.4    | 2.2  | -0.075 | 60   | 5:10:22  | 2018/11/21 | 0.181 |                    |
| 6019      | 4709.658 | 0.017 | 0.3     | -0.5 | -0.073 | 60   | 5:30:17  | 2018/11/21 | 0.188 |                    |
| 6020      | 4710.950 | 0.017 | 2.1     | -2.4 | -0.070 | 60   | 5:45:44  | 2018/11/21 | 0.177 |                    |
| 6021      | 4712.652 | 0.023 | -0.5    | -3.6 | -0.065 | 60   | 6:01:58  | 2018/11/21 | 0.185 |                    |
| 6022      | 4713.570 | 0.029 | 1.3     | -0.1 | -0.060 | 60   | 6:16:49  | 2018/11/21 | 0.184 |                    |
| 6023      | 4714.750 | 0.013 | -0.2    | -1.5 | -0.055 | 60   | 6:29:10  | 2018/11/21 | 0.191 |                    |
| 6024      | 4715.293 | 0.022 | -0.1    | -3.9 | -0.051 | 60   | 6:40:16  | 2018/11/21 | 0.181 |                    |
| 6025      | 4716.778 | 0.031 | 2.3     | -1.0 | -0.044 | 60   | 6:52:49  | 2018/11/21 | 0.174 |                    |
| 6026      | 4719.489 | 0.024 | 0.0     | -1.1 | -0.030 | 60   | 7:20:25  | 2018/11/21 | 0.184 |                    |
| 6001      | 4729.886 | 0.031 | 0.8     | -0.8 | -0.019 | 60   | 7:40:43  | 2018/11/21 | 0.172 | 仮重力点               |

| 2011년 년 25년 년 | 重力読み値    | 捕涎后去  | IFF ANY | IFF XX           | 潮汐補正   | 測定時間 | 測定時刻    | 測定日        | 器械高   | 144 - 12 |
|---------------|----------|-------|---------|------------------|--------|------|---------|------------|-------|----------|
| 側止息畬亏         | (mGal)   | 悰準備定  | 1唄さへ    | 唄さて              | (mGal) | (秒)  | UTC     | UTC        | (m)   | 加方       |
| 6001          | 4730.410 | 0.074 | 1.4     | -0.8             | 0.071  | 60   | 1:31:14 | 2018/11/22 | 0.177 | 仮重力点     |
| 6027          | 4720.448 | 0.051 | -0.5    | <del>-</del> 5.5 | -0.003 | 60   | 2:52:03 | 2018/11/22 | 0.185 |          |
| 6028          | 4723.400 | 0.054 | 5.5     | -1.5             | -0.014 | 60   | 3:05:15 | 2018/11/22 | 0.188 |          |
| 6029          | 4724.833 | 0.069 | 3.5     | -0.6             | -0.026 | 60   | 3:18:32 | 2018/11/22 | 0.103 |          |
| 6030          | 4726.328 | 0.061 | 1.6     | 0.0              | -0.035 | 60   | 3:30:04 | 2018/11/22 | 0.172 |          |
| 6031          | 4726.989 | 0.096 | 1.1     | -0.7             | -0.071 | 60   | 4:28:17 | 2018/11/22 | 0.158 |          |
| 6032          | 4727.641 | 0.107 | -1.5    | 0.8              | -0.077 | 60   | 4:41:27 | 2018/11/22 | 0.160 |          |
| 6033          | 4727.939 | 0.067 | 1.7     | -2.2             | -0.083 | 60   | 5:01:19 | 2018/11/22 | 0.166 |          |
| 6034          | 4727.839 | 0.129 | 3.2     | 0.2              | -0.087 | 60   | 5:18:23 | 2018/11/22 | 0.172 |          |
| 6035          | 4728.363 | 0.091 | -0.1    | 0.1              | -0.088 | 60   | 5:31:04 | 2018/11/22 | 0.163 |          |
| 6036          | 4729.138 | 0.093 | -0.5    | -1.0             | -0.087 | 60   | 6:08:41 | 2018/11/22 | 0.165 |          |
| 6037          | 4729.396 | 0.128 | 2.2     | -4.3             | -0.085 | 60   | 6:18:57 | 2018/11/22 | 0.176 |          |
| 6038          | 4730.013 | 0.123 | -3.0    | 0.5              | -0.082 | 60   | 6:31:55 | 2018/11/22 | 0.163 |          |
| 6039          | 4730.734 | 0.123 | -1.0    | 0.7              | -0.078 | 60   | 6:43:11 | 2018/11/22 | 0.168 |          |
| 6040          | 4730.962 | 0.101 | -3.1    | -2.2             | -0.074 | 60   | 6:55:00 | 2018/11/22 | 0.163 |          |
| 6001          | 4730.523 | 0.089 | 0.5     | 2.2              | -0.068 | 60   | 7:09:12 | 2018/11/22 | 0.169 | 仮重力点     |
| 6001          | 4731.199 | 0.086 | 2.3     | 3.1              | 0.158  | 60   | 0:23:02 | 2018/11/23 | 0.166 | 仮重力点     |
| 6041          | 4731.689 | 0.112 | 2.1     | -0.5             | 0.147  | 60   | 0:44:56 | 2018/11/23 | 0.167 |          |
| 6042          | 4730.912 | 0.089 | 0.7     | -1.7             | 0.139  | 60   | 0:58:20 | 2018/11/23 | 0.124 |          |
| 6043          | 4730.979 | 0.090 | 0.1     | -0.2             | 0.129  | 60   | 1:12:04 | 2018/11/23 | 0.168 |          |
| 6044          | 4731.266 | 0.083 | -1.4    | -3.6             | 0.120  | 60   | 1:24:20 | 2018/11/23 | 0.154 |          |
| 6045          | 4730.925 | 0.125 | 1.7     | -1.1             | 0.110  | 60   | 1:36:43 | 2018/11/23 | 0.179 |          |
| 6046          | 4731.504 | 0.141 | 1.3     | 1.8              | 0.098  | 60   | 1:49:39 | 2018/11/23 | 0.170 |          |
| 6047          | 4731.606 | 0.069 | 0.1     | -0.7             | 0.085  | 60   | 2:03:48 | 2018/11/23 | 0.172 |          |
| 6048          | 4731.716 | 0.118 | 1.3     | -1.0             | 0.077  | 60   | 2:12:21 | 2018/11/23 | 0.165 |          |
| 6049          | 4731.735 | 0.125 | 1.9     | 2.7              | 0.042  | 60   | 2:47:09 | 2018/11/23 | 0.100 |          |
| 6050          | 4731.773 | 0.120 | 2.3     | -0.5             | 0.032  | 60   | 2:56:19 | 2018/11/23 | 0.167 |          |
| 6051          | 4731.907 | 0.144 | 3.0     | -0.9             | 0.022  | 60   | 3:06:20 | 2018/11/23 | 0.167 |          |
| 6052          | 4732.000 | 0.138 | -0.9    | 2.7              | -0.076 | 60   | 5:04:35 | 2018/11/23 | 0.167 |          |
| 6053          | 4732.109 | 0.100 | -6.8    | -2.8             | -0.080 | 60   | 5:13:21 | 2018/11/23 | 0.167 |          |
| 6054          | 4732.191 | 0.103 | 0.3     | -1.3             | -0.084 | 60   | 5:23:05 | 2018/11/23 | 0.160 |          |
| 6055          | 4732.272 | 0.096 | 1.7     | -1.7             | -0.088 | 60   | 5:32:41 | 2018/11/23 | 0.172 |          |
| 6056          | 4728.599 | 0.073 | -4.7    | -1.9             | -0.095 | 60   | 5:57:01 | 2018/11/23 | 0.172 |          |
| 6057          | 4728.031 | 0.091 | 1.0     | 0.9              | -0.096 | 60   | 6:05:21 | 2018/11/23 | 0.178 |          |
| 6058          | 4727.512 | 0.098 | 3.3     | -0.8             | -0.097 | 60   | 6:14:51 | 2018/11/23 | 0.186 |          |
| 6059          | 4726.647 | 0.085 | -1.6    | 0.9              | -0.097 | 60   | 6:27:41 | 2018/11/23 | 0.169 |          |
| 6001          | 4731.148 | 0.059 | -1.3    | -1.1             | -0.096 | 60   | 6:43:46 | 2018/11/23 | 0.169 | 仮重力点     |

# 表7(その2) 中央構造線断層系測線Aにおける重力測定結果。

表7により得られた読み取り値より、器械高補正、ドリフト補正、緯度補正(正規重 力値との差の算出)、大気補正、フリーエア補正、ブーゲー補正を行うことにより、ブー ゲー異常値を算出した。ただし、地形補正は行っていない。ブーゲー補正の際に、地域 は離れているが、伊藤ほか(1996)と同様に本地域の標準地層の密度を、2.5 g/cm<sup>3</sup>にし た。算出されたブーゲー異常値を表8に示す。また、北端から南端に向かう距離に対す るブーゲー異常値の変化を図11に示す。

## 表 8 中央構造線断層系測線 A におけるブーゲー異常値。

| 测空占来旦 | 絶対重力値     | ブーゲー異常値 | 测学占来早 | 絶対重力値     | ブーゲー異常値 |  |
|-------|-----------|---------|-------|-----------|---------|--|
| 側止品留万 | (mGal)    | (mGal)  | 側止尽留方 | (mGal)    | (mGal)  |  |
| 6002  | 979602.10 | -5.28   | 6030  | 979622.35 | -10.86  |  |
| 6003  | 979604.49 | -4.06   | 6058  | 979622.83 | -11.51  |  |
| 6004  | 979606.17 | -2.87   | 6031  | 979622.98 | -11.61  |  |
| 6005  | 979607.18 | -3.37   | 6057  | 979623.35 | -11.93  |  |
| 6006  | 979608.33 | -3.97   | 6032  | 979623.63 | -12.38  |  |
| 6007  | 979608.96 | -2.68   | 6056  | 979623.91 | -12.63  |  |
| 6008  | 979609.33 | -1.90   | 6033  | 979623.93 | -13.21  |  |
| 6009  | 979610.42 | 0.26    | 6034  | 979623.82 | -12.92  |  |
| 6010  | 979607.75 | 0.11    | 6035  | 979624.34 | -13.18  |  |
| 6011  | 979605.15 | -0.89   | 6036  | 979625.10 | -13.57  |  |
| 6012  | 979601.69 | -1.61   | 6037  | 979625.36 | -13.52  |  |
| 6013  | 979600.95 | -2.09   | 6038  | 979625.97 | -13.60  |  |
| 6014  | 979600.13 | -1.62   | 6039  | 979626.69 | -13.34  |  |
| 6015  | 979597.32 | -1.07   | 6040  | 979626.91 | -13.44  |  |
| 6016  | 979600.01 | -0.78   | 6041  | 979626.96 | -13.32  |  |
| 6017  | 979603.35 | -1.04   | 6042  | 979626.17 | -13.42  |  |
| 6018  | 979605.05 | -1.92   | 6043  | 979626.26 | -13.47  |  |
| 6019  | 979606.29 | -2.81   | 6044  | 979626.54 | -13.36  |  |
| 6020  | 979607.58 | -4.05   | 6045  | 979626.21 | -13.60  |  |
| 6021  | 979609.27 | -4.49   | 6046  | 979626.79 | -13.48  |  |
| 6022  | 979610.19 | -5.44   | 6047  | 979626.89 | -13.47  |  |
| 6023  | 979611.36 | -5.41   | 6048  | 979627.00 | -13.48  |  |
| 6024  | 979611.90 | -6.05   | 6049  | 979627.00 | -13.54  |  |
| 6025  | 979613.39 | -6.10   | 6050  | 979627.06 | -13.57  |  |
| 6026  | 979616.08 | -7.58   | 6051  | 979627.20 | -13.58  |  |
| 6027  | 979616.48 | -8.04   | 6052  | 979627.31 | -13.90  |  |
| 6028  | 979619.43 | -9.52   | 6053  | 979627.42 | -13.65  |  |
| 6029  | 979620.83 | -10.11  | 6054  | 979627.50 | -13.65  |  |
| 6059  | 979621.97 | -10.66  | 6055  | 979627.58 | -13.64  |  |

図 11 において、ブーゲー異常値は沖積層の分布する海岸平野で小さく、南側の山地で 大きくなる。最も大きくなるのは和泉層群中で、構成岩石の密度がより大きくなると推定 される三波川コンプレックスの分布地域ではむしろそれより小さくなる。ただし、この値 は地形補正をしていないことに注意する必要がある。

地質調査総合センター(2004)の編集図では、本調査結果と場所が必ずしも一致するわけではないが、三波川コンプレックスの分布地域でブーゲー異常値が小さくなることが示されている。ただし、この編集図の元となるデータの分布は本調査に比べ極めて粗であるので、本調査の方が場所に関する分解能は高いことに注意が必要である。



図 11 中央構造線断層系 A 測線の重力異常。

地形補正は施されてはいないが、大局的な構造を理解するため、密度構造モデルを作成 した。本調査地域の地質は、高温低圧型の変成作用を受けた砂岩や泥岩を原岩とする変成 岩類や花崗岩類からなる領家コンプレックス、低温高圧型の変成作用を受けた泥質片岩、 珪質片岩や塩基性片岩からなる三波川コンプレックス、白亜紀の砂岩、泥岩やその互層か らなる和泉層群、第四紀の砂礫層やシルト層からなる岡村層、および沖積層からなる。本 調査地域の南方には、白亜紀以降の砂岩、泥岩などからなる付加体堆積物である四万十帯 が分布する。これらの地層や岩石類の密度は、伊藤ほか(1996)によって、次のように推 定されている。すなわち、

・領家コンプレックス: 2.57~2.65 g/cm<sup>3</sup>

・三波川コンプレックス(全体として): 2.65~2.73 g/cm<sup>3</sup>

このうち、塩基性片岩は、2.9~3.0 g/cm<sup>3</sup>、珪質片岩は、2.7 g/cm<sup>3</sup>、泥質片岩は、2.5~ 2.6 g/cm<sup>3</sup>とされている。

・和泉層群:2.5 g/cm<sup>3</sup>

である。このほか、伊藤ほか(1996)が調査した徳島県脇町周辺には鮮新世〜更新世の礫 よりなる土柱層が分布し、2.3 g/cm<sup>3</sup>と推定している。解析の結果、領家コンプレックスと 三波川コンプレックスでは、それぞれ 2.61 g/cm<sup>3</sup>および 2.69 g/cm<sup>3</sup>のときに最適解が得ら れたとしている。本調査地域では、反射法地震探査などの解析が進むことにより、地下の P 波速度構造が明瞭になれば、独自にこの速度構造より岩石の密度が推定されうるが、現 時点では、おおむね類似の岩石が分布する伊藤ほか(1996)の結果に基づいて、地下密度 構造を以下のように設定する。 第 1 層 : 2.10 g/cm<sup>3</sup> 第 2 層 : 2.50 g/cm<sup>3</sup> 第 3 層 : 2.60 g/cm<sup>3</sup> 第 4 層 : 2.70 g/cm<sup>3</sup> 第 5 層 : 2.50 g/cm<sup>3</sup>

地質区分とこれらの密度層との対比関係は、おおよそ第1層が岡村層および沖積層、第2 層が和泉層群、第3層が領家コンプレックス、第4層が三波川コンプレックスおよび第5 層が四万十帯である。また、三波川コンプレックスの厚さについては、Sato et al. (2015) に基づき、およそ5kmとした。密度構造から算出されるブーゲー異常値はTalwani et al. (1959)の方法に基づく、LTC 社製 2 MOD を使用した。この際、background density は、 ブーゲー補正算出時に用いたのと同じ標準地層の密度 2.50 g/cm<sup>3</sup>とした。解析に当たって は、地表に分布する地質と矛盾の内容にし、サブテーマ1で予察的に得られている反射法 地震探査による深度断面を参考にした。解析の結果を図12に示す。図12において、左図 が観測ブーゲー異常値と密度構造から推定される計算ブーゲー異常値を示し、中図に密度 構造図、右図に参考にした反射法地震探査による深度断面図を示す(図 12)。北端から 5000 m 範囲では、観測と計算ブーゲー異常値はおおむねよい一致を示す。しかしながら、それ より南方では両者は大きく異なる値を示す。その範囲は、沖積層や岡村層、和泉層群の北 半部の分布域に該当する。岡村層と和泉層群の境界は活断層として知られる岡村断層があ る。図 12 の重力調査に基づく密度構造図からは、岡村層に相当する密度 2.10 g/cm<sup>3</sup>と和 泉層群に相当する密度 2.50 g/cm<sup>3</sup>の層の境界が急傾斜ではなく、北に緩く傾斜する場合が 最もよく観測ブーゲー異常値を説明しており、このことから、岡村断層は地下では北傾斜 をなすと推定される(図 13)。なお、岡村層より北側の活断層、例えば小松断層などはブ ーゲー異常値から推定される密度構造にはほとんど反映されないので、図 13 の断層解釈 図には記載していない。



図 12 中央構造線断層系 A 測線におけるブーゲー異常値と密度構造モデル:三波 川コンプレックスの密度を均一としたとき。左図:観測ブーゲー異常値と密度構造 から推定される計算ブーゲー異常値。中図:密度構造図。右図:反射法地震探査に よる深度断面図。中図において、地層との対応関係は、おおよそ第1層(2.10 g/cm<sup>3</sup>) が岡村層および沖積層、第2層(2.50 g/cm<sup>3</sup>)が和泉層群、第3層(2.60 g/cm<sup>3</sup>) が領家コンプレックス、第4層(2.70 g/cm<sup>3</sup>)が三波川コンプレックスおよび第5 層(2.50 g/cm<sup>3</sup>)が四万十帯である。



図 13 中央構造線断層系 A 測線における三波川コンプレックスの密度を均一としたときの密度構造から推定される断層構造。

前述のように、ブーゲー異常値は和泉層群の地表分布域の方が三波川コンプレックス分 布域に比べて大きな値を示す。先に設定した密度構造は、単純に和泉層群の方が小さく、 三波川コンプレックスの方が大きいとしたが、このままではブーゲー異常値の高低を十分 に説明できない。もちろん今回算出したブーゲー異常値は地形補正をしていないので、今 後変更が見込まれるが、図 12 に示したような、和泉層群分布域から三波川コンプレック ス分布域への数 mGal の変化は地形補正をしたとしても解消されない可能性がある。そこ で、まだ極めて予察的ではあるが、三波川コンプレックス内に密度の異なる岩体があると して解析を試みる。青矢ほか (2013) などは、三波川コンプレックスには、塩基性片岩の ほかにエクロジャイト化した超塩基性岩のような密度の大きい岩石が存在することを明ら かにする一方で、泥質片岩のような密度の小さい岩石の分布も示している。そこで、ここ では、密度の大きい岩石を 3.3 g/cm<sup>3</sup>、密度の小さい岩石を 2.6 g/cm<sup>3</sup>として、三波川コン プレックスの浅部に導入し、測定ブーゲー異常値に近い計算値が得られるかどうか試みる。 結果の一例を図 14 に示す。図 14 において、左図が観測ブーゲー異常値と密度構造から推 定される計算ブーゲー異常値を示し、中図に密度構造図、右図に参考にした反射法地震探 査による深度断面図を示す。



図 14 中央構造線断層系 A 測線におけるブーゲー異常値と密度構造モデル: 三波川コンプレックスの密度を不均一としたとき。左図:観測ブーゲー異常値 と密度構造から推定される計算ブーゲー異常値。中図:密度構造図。右図:反 射法地震探査による深度断面図。



図 15 中央構造線断層系 A 測線における三波川コンプレックスの密度を不均一 としたときの密度構造から推定される断層構造。

図 14 に示すとおり、三波川コンプレックス中に密度の大きい岩体や小さい岩体を導入 することで、観測から得られたブーゲー異常値と概ねよい一致を示す計算値を得ることが できる。この岩体の形状や密度の大きさについては、ほとんど拘束するものがないため、 図 14 に示す岩体の形状や密度は任意性が大きい。しかしながら、このような岩体を導入 しても、岡村層と和泉層群の境界の地下形状はほとんど変化せず、この境界をなす岡村断 層はやはり北傾斜であると解釈できる(図 15)。先の例と同様に、岡村層より北側の活断 層である小松断層などはブーゲー異常値から推定される密度構造にはほとんど反映されな い。

#### (d) 結論ならびに(d) 結論ならびに

稠密重力調査により、安曇川測線および中央構造線断層帯A測線のブーゲー異常値の変化 が明らかになった。安曇川測線では、重力の変曲点と断層などの地質構造との関連が示唆さ れる。中央構造線断層帯A測線では、三波川コンプレックスの分布地域よりも和泉層群分布 地域でブーゲー異常値が大きくなる傾向がある。

今後、以下のような点について検討を進める必要がある。課題①において、ブーゲー補正 に用いる仮定密度については、今後、同測線で実施される地震探査によるP波速度の情報に基 づき、改訂の予定である。また、この密度を使って、地形補正を実施する予定である。それ らの重力解析結果と本課題で行われる地震探査および既往の文献調査により、地下密度構造 を推定し、活断層の地下深部形状の推定に資する。また、課題②においても、ブーゲー補正 に用いる密度については、今後、同測線で実施される地震探査結果によるP波速度の情報に基 づき、改訂の予定である。また、この密度を使って、地形補正を実施する予定である。それ らの重力解析結果と本課題で行われる地震探査および既往の文献調査により、地下密度構造 を推定し、活断層の地下深部形状の推定に資する。また、地表地質では和泉層群の分布範囲 でブーゲー異常値が大きく、三波川コンプレックスの分布地域で同異常値が小さくなること について、地形補正を加えることや標高値の測定結果について誤差を考慮し、この傾向を確 認する。一方で、既往文献から三波川コンプレックスの岩相不均一性と密度構造やブーゲー 異常の変化との関連を検討する。

(e) 引用文献

- 青矢睦月・野田 篤・水野清秀・水上知行・宮地良典・松浦浩久・遠藤俊祐・利光誠一・青 木正博,新居浜地域の地質,地域地質研究報告(5万分の1地質図幅),産総研地質調査 総合センター,181p,2013.
- 地質調査総合センター,日本重力 CD-ROM 第2版,2004.
- 地質調査総合センター,1:200,000地質図幅「高知第2版」,2018.
- 木村克己・吉岡敏和・中野聰志・松岡 篤,北小松地域の地質,地域地質研究報告(5 万分の1 地質図幅),地質調査所,102p,2001.
- 木村克己・吉岡敏和・井本伸広・田中里志・武蔵野実・高橋裕平,京都東北部地域の地 質,地域地質研究報告(5万分の1地質図幅),地質調査所,89p,1998.
- 石田志朗・河田清雄・宮村 学, 彦根西部地域の地質, 地域地質研究報告(5 万分の1

地質図幅), 地質調査所, 121p, 1984.

- 伊藤谷生・井川 猛・足立幾久・伊勢崎修弘・平田 直・浅沼俊夫・宮内崇裕・松本みど り・高橋通浩・松澤進一・鈴木雅也・石田啓祐・奥池司郎・木村 学・國友孝洋・後藤 忠徳・澤田臣啓・竹下 徹・仲谷英夫・長谷川修一・前田卓哉・村田明広・山北 聡・ 山口和雄・山口 覚,四国中央構造線地下構造の総合物理探査,地質学雑誌,102巻, 346-360,1996.
- 宮内崇裕・岡田篤正・堤 浩之・東郷正美・平川一臣,都市圏活断層図「北小松」, D1-No.449,国土地理院, 2004.
- 中江 訓・吉岡敏和, 熊川地域の地質, 地域地質研究報告(5万分の1地質図幅), 地 質調査所, 71p, 1998.
- 中江 訓・吉岡敏和・内藤一樹, 竹生島地域の地質, 地域地質研究報告(5万分の1地質 図幅), 地質調査所, 71p, 2001.
- 岡田篤正・東郷正美・中田 高・植村善博・渡辺満久,都市圏活断層図「京都東北部第2 版」, D1-No.524,国土地理院, 2008.
- Sato, H., Kato, N., Abe S., Van Horne, A., Takeda, T., Reactivation of an old plate interface as a strike-slip fault in a slip-partitioned system: Median Tectonic Line, SW Japan. Tectonophysics, 644-645, 58-67, 2015.
- Talwani, M., Worzel, J. M., Landisman, M., Rapid Gravity Computations of twodimensional bodies with application to the Mendocino Submarine Fracture Zone. Jour. Geophys. Res., 64,49-59, 1959.
- 堤 浩之・熊原康博・千田 昇・東郷正美・平川一臣・八木浩司,都市圏活断層図「熊 川」, D1-No.449,国土地理院, 2004.