「日本海中南部の海域活断層の長期評価(第一版) —近畿地域・北陸地域北方沖—」について

令和7年6月27日 地震調査研究推進本部 地震調査委員会

地震調査研究推進本部地震調査委員会は、これまで内陸の活断層で発生する 地震や海溝型地震に加えて、海域の活断層で発生する地震を対象とし、将来発生 する可能性のある地震の規模、確率などについて評価し、これを長期評価として 公表してきた。海域の活断層の長期評価としては、令和4年(2022年)3月25 日に「日本海南西部の海域活断層の長期評価(第一版)一九州地域・中国地域北 方沖一」を初めて公表した。その後も、順次日本海側の海域活断層の長期評価を 進めていたところ、令和6年(2024年)1月1日に石川県能登地方を震源とす るマグニチュード7.6の地震が発生した。これを受け、兵庫県北方沖~新潟県 上越地方沖の海域活断層について、令和6年(2024年)8月に「日本海側の海 域活断層の長期評価一兵庫県北方沖~新潟県上越地方沖一(令和6年8月版)」 (以下「令和6年8月版」という。)を公表した。令和6年8月版では、海域活 断層の位置、長さ、形状及びそこで発生する地震の規模等についての評価を公表 したが、地震発生確率の評価は行っていなかった。

今回、地震の発生確率を含めた長期評価を実施するにあたり、地質構造の特徴 の違い等の理由から、令和6年8月版で公表した上越沖断層帯、名立沖断層及び 上越海丘東縁断層の3断層(帯)が含まれる上越地方沖を除いた、近畿地域北方 沖~北陸地域北方沖の海域を評価対象とし、今回の評価対象海域を「日本海中南 部」とした。その上で、令和6年8月版までに認定した22の活断層(帯)に富 山トラフ横断断層を加えた23断層(帯)を対象として長期評価をとりまとめた。

なお、今回評価対象から除外した3断層(帯)については、次回の評価対象海 域に含め、今後改めて評価する予定である。

令	和	7	年	Ξ (3	月	2	7	日
地	震	調	査	研	究	推	進	本	部
地	震		調	3	£	委	Ē		会

日本海中南部の海域活断層の長期評価(第一版) —近畿地域・北陸地域北方沖—

日本海中南部として評価の対象とした海域は、兵庫県、京都府、福井県、石川県、富山県 の沖合である。本評価対象海域に分布する活断層のうち、その活動が社会的、経済的に大き な影響を与えるおそれのあるマグニチュード(M) 7.0 程度以上の地震を発生させる可能性 がある、長さ 20 km 以上の活断層を主な対象として、これまでに行われた調査研究成果等 に基づき評価対象海域の海域活断層の長期評価を行った。また、断層長さが 20 km 未満の 活断層についても、位置と長さについて評価した。なお、海域を対象とした活断層の長期評 価では、陸域の活断層評価と同等の過去の活動履歴に関する地質学的データを得ることは 難しく、主に反射法地震探査データを用いて活断層を評価する必要がある。そのため、本評 価対象海域で採用した評価手法についても掲載した。

なお、本評価は海域活断層の長期的な活動についての評価をまとめたもので、2024年1 月1日に石川県能登地方で発生した M7.6の地震(注1)後に続いている活発な地震活動に ついての評価は、地震調査委員会として別に公表している。

1. 評価対象海域の特徴

日本海はユーラシア大陸から日本列島が分離することによって形成された。本評価対象 海域は、日本海の形成時期に断層運動を伴って大きく沈降し、その後のフィリピン海プレー トの沈み込み開始と沈み込み方向の変化などによって、断層運動を伴う地殻変動が進行し てきた。本評価対象海域の現在の応力場はおおよそ東西から北西-南東圧縮と考えられて おり、本評価対象海域の活断層の現在の活動はこの応力場を反映していると考えられるが、 その特性は過去に形成された地質構造の影響を強く受けている。ここでは図1に示すよう に、活断層の分布や地質構造等を考慮して評価対象海域を西部区域と東部区域に区分し、そ れぞれの海域に分布する活断層及び地震活動の特徴について述べる。

西部区域(近畿北方沖·北陸西部沖)

本区域では、北北西-南南東走向の左横ずれ断層とおおよそ東北東-西南西~北東-南 西走向の逆断層(横ずれ成分を伴うことがある)が発達し、隣接陸域の地域評価に含まれて いる郷村断層帯の海域延長部まで破壊した 1927 年北丹後地震(M7.3)が、この区域の代表 的地震である。東側の越前岬から北東には、逆断層(横ずれ成分を伴うことがある)のみが 分布し、歴史時代で規模も M6.5 以下と推定されるが、「大聖寺沖」や「越前岬沖」と称され る地震が時々発生している。

東部区域(金沢平野西方沖~能登半島周辺・富山トラフ西側)

本区域では沿岸の海域で主に南北走向又は北東-南西走向の逆断層(横ずれ成分を伴う ことがある)が発達し、特に能登半島周辺では、M6.5 程度以下の被害地震が、近代以降も 発生頻度が高いが、2024年1月1日に石川県能登地方で発生した M7.6 の地震の発生以前 は、平成19年(2007年)能登半島地震(M6.9)が最大規模であった。本区域の能登半島の 西と北の海域には、特に多数の活断層が半島を縁取るように密に分布するが、2007年まで は地震活動は相対的に低い地域であった。

2. 日本海中南部の海域活断層の特性と地震の長期評価

2-1. 西部区域(近畿北方沖·北陸西部沖)

西部区域には、北北西-南南東走向の左横ずれ断層とおおよそ東北東-西南西~北東-南西走向の逆断層(横ずれ成分を伴うことがある)が分布する。左横ずれ断層として沖ノ礁 北方断層、小浜沖断層、浦島礁北方北断層、浦島礁北東断層の4断層が、右横ずれ成分を伴 う逆断層として経ヶ岬沖断層、若狭海丘列北縁断層、越前岬西方沖北断層、ゲンタツ瀬・大 グリ南東縁断層帯の3断層及び1断層帯が、逆断層として加佐ノ岬沖断層が分布する(図2 -1又は図2-2における断層番号1から9)。

本区域では、定常的な地震活動は東部に比べて低調であり、1919 年から 2024 年までの 106 年間に発生した最大の地震は、1927 年北丹後地震(M7.3)で、この地震は陸域の郷村断 層帯とその海域延長部を破壊した。海域にのみ震源域がある 1963 年越前岬沖地震(M6.9) は、陸域の野坂断層帯の海域延長部で発生したと考えられている。

本区域に分布する評価対象の海域活断層(帯)の位置を表1-1に、断層帯を構成する各 区間(評価単位区間)が単独で活動する場合の地震の規模、複数区間が同時に活動する場合 の地震の規模、断層の形状や上下方向のずれの量等の特性を表1-2に示す。これらに基づ いて、本区域の評価対象の海域活断層(帯)の評価単位区間のいずれかを震源として今後30 年以内にM7.0以上の地震が発生する確率を計算すると4-6%程度となる。これらの海域 活断層において、本区域で発生し得る最大級の地震はゲンタツ瀬・大グリ南東縁断層帯の全 区間が同時に活動する場合であり、M7.7程度の地震が発生する可能性がある(注2)。また、 本区域では、これら海域活断層の他に、長さが20kmに満たない活断層と認定された海域 活断層が11断層(図2-1又は図2-2における断層記号a-k)ある。

2-2. 東部区域(金沢平野西方沖~能登半島周辺・富山トラフ西側)

東部区域には、主に南北走向又は北東-南西走向の逆断層(横ずれ成分を伴うことがある)が分布しており、それらは羽咋沖東断層、羽咋沖西断層、内灘沖断層、海士岬沖東断層、 門前断層帯、沖ノ瀬東方断層、能登半島北岸断層帯、輪島はるか沖断層、能登半島北方沖断 層、舳倉島近海断層帯、七尾湾東方断層帯、飯田海脚南縁断層、富山トラフ西縁断層及び富 山トラフ横断断層の10 断層及び4 断層帯である(図2-1又は図2-3における断層番号 10 から23)。本区域では主に西北西-東南東方向から北西-南東方向に圧力軸を持つ逆断 層型の地震が発生しているが、西部区域と同様に一部横ずれ断層型の地震も見られる。

本区域で、1919年から2024年までの106年間に発生した最大の地震は、2024年1月1 日に石川県能登地方で発生した地震(M7.6)である。この地震は、能登半島北岸沖に分布す る活断層の破壊によって発生した。本区域に分布する評価対象の海域活断層(帯)の位置を 表1-1に、断層帯を構成する各区間(評価単位区間)が単独で活動する場合の地震の規模、 複数区間が同時に活動する場合の地震の規模、断層の形状や上下方向のずれの量等の特性 を表1-2に示す。これらに基づいて、本区域の評価対象の海域活断層(帯)の評価単位区 間のいずれかを震源として今後30年以内にM7.0以上の地震が発生する確率を計算すると 12-14%程度となる。これらの海域活断層において、本区域で発生し得る最大級の地震は能 登半島北岸断層帯の全区間が同時に活動する場合であり、M7.8-8.1程度の地震が発生する 可能性がある。また、本区域では、これらの海域活断層の他に、長さが20kmには満たない が活断層と認定された海域活断層が2断層(図2-1又は図2-3における断層記号1,m) ある。

なお、上記の西部及び東部区域に分布する活断層帯又は活断層が隣接している場合には、 部分的に同時に活動する可能性を否定できないことに留意する必要がある。

3. 今後に向けて

本評価は、主に現時点で利用できる海域の反射法地震探査断面(反射断面)を用いて、海 底下浅部の地質構造に基づいて活断層の認定を行い、日本海中南部を西部、東部の2つの区 域に分け、それぞれの区域について海域活断層の特性を求め、各区域及び日本海中南部全体 において、今後30年以内にM7.0程度以上の地震が発生する確率を評価した(表1-1)。 ここで主な評価の対象とした活断層は、海底下浅部の地質構造で確認できた長さが20km程 度以上のものである。

本評価で利用した反射断面からは、断層の位置や浅部における形状、上下のずれの量を 推定可能であるが、一部の活断層を除いて、活断層の活動履歴を解明するには分解能が不十 分であった。そのため、「日本海南西部の海域活断層の長期評価(第一版)一九州地域・中 国地域北方沖一」(地震調査研究推進本部地震調査委員会,2022)(以下「日本海南西部の長 期評価」という)と同様に、中期更新世の基準面の上下方向のずれの速度と地震のメカニズ ム解から算出される横ずれと縦ずれの比を用いて平均変位速度を推定し、海域活断層の平 均活動間隔を推定した。評価の信頼性の向上のため、海域活断層の活動履歴や変位速度を直 接解明するための調査研究が望まれる。

海域活断層の認定については、海底地形調査の範囲や分解能及び反射法地震探査におけ る測線の分布と密度及び反射断面の分解能の制約がある。特に海岸から5-10km 程度の浅 海域はデータが欠落している場合があるため、本評価では認定していない海域活断層が存 在する可能性もある。このような沿岸の浅い海域において地震が発生した場合、陸域で大き な揺れや地震発生からわずかな時間で津波が到達するおそれもあり、海岸に近い浅海域に おいても海域活断層を認定するための調査研究が望まれる。

活断層の形状については、深部の構造を推定できる反射探査データは限られているため、

多くの断層で深部形状を明らかにすることが難しかった。マルチチャンネル反射法地震探 査に加え、地震活動など様々な地球物理学データを用いて活断層の深部形状を検討するこ とが望まれる。

さらに、複数の活動区間が同時に活動する確率や隣接する海域活断層の連動可能性の検 討、既知の活断層以外による地震の評価も含め、地域単位の地震発生確率を算出するための 長期予測手法の高度化についても検討する必要がある。

なお、評価対象海域の中には、近畿地域ならびに中部地域における主要活断層帯の海域 延長部が入り込むように分布している場合がある。今後、これら海域と陸域の活断層を統合 した評価手法の検討も必要である。

図1 日本海中南部における評価対象の海域活断層(帯)と主な被害地震の震央 丸印は表4にある主な被害地震のうち、マグニチュード(M)6以上の地震の震央を示している。 発生年を括弧内に西暦年で示した。地形はGEBC0 Compilation Group (2023)による。

評価対象断層

- 1: 沖ノ礁北方断層
- 2: 経ヶ岬沖断層
- 3: 小浜沖断層
- 4: 浦島礁北方北断層
- 5: 若狭海丘列北縁断層
- 6: 越前岬西方沖北断層
- 7: 浦島礁北東断層
- 8-1: ゲンタツ瀬・大グリ南東縁断層帯(ゲンタツ瀬区間)
- 8-2: ゲンタツ瀬・大グリ南東縁断層帯 (大グリ区間)
- 9: 加佐ノ岬沖断層
- 10: 羽咋沖東断層
- 11: 羽咋沖西断層
- 12: 内灘沖断層
- 13: 海士岬沖東断層

- 14-1:門前断層帯(門前沖区間)
- 14-2:門前断層帯(海士岬沖区間)
- 15: 沖ノ瀬東方断層
- 16-1: 能登半島北岸断層帯(猿山沖区間)
- 16-2: 能登半島北岸断層帯(輪島沖区間)
- 16-3: 能登半島北岸断層帯(珠洲沖区間)
- 17: 輪島はるか沖断層
- 18: 能登半島北方沖断層
- 19-1: 舳倉島近海断層帯(南西区間)
- 19-2: 舳倉島近海断層帯(北東区間)
- 20-1: 七尾湾東方断層帯 (大泊鼻沖区間)
- 20-2: 七尾湾東方断層帯(城ヶ崎沖区間)
- 21: 飯田海脚南縁断層
- 22: 富山トラフ西縁断層
- 23: 富山トラフ横断断層

図 2-1 評価対象の海域活断層(帯)と海域の短い活断層の分布

図中の番号は上記各断層(帯)の区間に対応する(表1-1、表1-2参照)。 海域の短い活断層の記号は表2を参照。地形はGEBCO Compilation Group (2023)による。

(西部区域)

- 1:沖ノ礁北方断層
- 2:経ヶ岬沖断層
- 3:小浜沖断層
- 4: 浦島礁北方北断層
- 5: 若狭海丘列北縁断層
- 6: 越前岬西方沖北断層
- 7: 浦島礁北東断層
- 8-1:ゲンタツ瀬・大グリ南東縁断層帯(ゲンタツ瀬区間)
- 8-2:ゲンタツ瀬・大グリ南東縁断層帯(大グリ区間)
- 9:加佐ノ岬沖断層

図 2-2 西部区域における評価対象の海域活断層(帯)と海域の短い活断層の分布 地形は GEBCO Compilation Group (2023) による。

図 2-3 東部区域における評価対象の海域活断層(帯)と海域の短い活断層の分布 地形は GEBCO Compilation Group (2023) による。

表1-1 日本海中南部における評価対象の海域活断層(帯)の位置と評価海域で発生する地震の発生確率

地					端	点1			端,	30年以内M≧7の発 生確率 ^{注3)}			
域細分	図中の 番号	活断層のくくり (付録2)	評価単位区間 (付録2)		北緯	東経	信頼度 ^{注2)}		北緯	L緯 東経 信頼		95%信頼区間 (中央値)	
	1	沖ノ礁北	北端	36°06'	135°04'	0	南端	35° 53'	135°09'	0			
	2	経ヶ岬シ	中断層	南西端	35° 47'	135°09'	Δ	北東端	36°00'	135°26'	0		
	3	小浜沖	北西端	35° 48'	135° 27'	0	南東端	35° 33'	135° 40'	Δ			
	4	浦島礁北フ	北端	36° 30'	135° 10'	0	南端	36°11'	135°20'	0			
西	5	若狭海丘列	南西端	36° 33'	134° 48'	Δ	北東端	36° 36'	135°02'	Δ	4-6		
部	6	越前岬西方	西端	35° 55'	135° 31'	0	東端	36°06'	135° 53'	0	(5)		
	7	浦島礁北	北西端	36°11'	135° 25'	0	南東端	36°01'	135° 33'	0			
	8-1	ゲンタツ瀬・大グリ	ゲンタツ瀬区間	南西端	36° 10'	135° 41'	0	北東端	36°18'	135°51'	0	1	
	8-2	南東縁断層帯	大グリ区間	南西端	36° 14'	135° 52'	0	北東端	36° 29'	136°08'	0		
	9	加佐ノ岬	南西端	36° 30'	136°01'	0	北東端	36° 40'	136°12'	0	1	調査領域	
	10	羽咋沖頭	南端	36° 48'	136°34'	0	北端	37°04'	136°32'	0			
	11	羽咋沖西	南端	36° 52'	136°27'	0	北端	37°04'	136°29'	0			
	12	内灘沖	南西端	36° 44'	136°02'	0	北東端	36° 58'	136°12'	0			
	13	海士岬沖	南西端	37° 05'	136° 30'	0	北東端	37°14'	136° 38'	0			
	14-1	田忠秀函性	門前沖区間	南西端	37°11'	136°29'	0	北東端	37° 17'	136°43'	Δ		全体 16-18
	14-2		海士岬沖区間	南西端	37° 03'	136°24'	0	北東端	37°11'	136°31'	0		(17)
	15	沖ノ瀬東	南西端	37° 07'	136°24'	0	北東端	37°22'	136° 37'	0			
	16-1		猿山沖区間	南西端	37° 18'	136°42'	0	北東端	37°27'	136°54'	0		
	16-2	能登半島北岸断層帯	輪島沖区間	南西端	37°28'	136°54'	0	北東端	37° 31'	137°09'	0		
東部	16-3		珠洲沖区間	南西端	37° 32'	137°09'	0	北東端	37° 45'	137°36'	0	12-14 (13)	
	17	輪島はるた	南西端	37° 25'	136°46'	0	北東端	37° 33'	136° 59'	0			
	18	能登半島北	南西端	37° 34'	137°08'	0	北東端	37° 46'	137°23'	0			
	19-1	屾合自近海辉园世	南西区間	南西端	37° 45'	136° 48'	0	北東端	37° 57'	137°12'	Δ		
	19-2	加加加过一步	北東区間	南西端	37° 57'	137°12'	Δ	北東端	38°04'	137°25'	0		
	20-1	と同学時代表面性	大泊鼻沖区間	南端	36° 54'	137°09'	Δ	北端	37° 07'	137°10'	Δ		
	20-2	し疟泻米刀町眉市	城ヶ崎沖区間	南西端	37° 07'	137°10'	Δ	北東端	37° 15'	137°20'	0		
	21	飯田海脚門	南西端	37° 16'	137°22'	0	北東端	37° 20'	137° 42'	0			
	22	富山トラフ	南端	37° 36'	137° 38'	0	北端	38° 07'	137° 54'	Δ			
	23	富山トラフ	西端	37° 50'	137°52'	0	東端	37° 54'	138°04'	0			

							ずれの向きと種類													
地域細分	中番 図の号	活断層の くくり (付録2)	評価単位 区間 (付録2)	断層 長 (km)	信頼度	各区間単独活 動の場合の地 震規模(M)	断層の 走向 注5)	種類	信頼度	断層面の 傾斜方向	信頼度	断 断	断 の 端 深 (km)	断層面 の幅 (km)	基準面の上 下変位量 (m) ^{注7)}	信頼 度	1回の ずれ量 ^{注8)}	平均変 位速度 (m/千 年) ^{注9)}	活動度	平均活 動間隔 (千 年) ^{注9)}
	1	1 沖ノ礁北方断層		25	0	7.2程度	N163° E	左横ずれ	0	ほぼ垂直	0	0	15	15km程度	15		3m程度	0.12	B一C級	21
	2	経ケ	岬沖断層	36	Δ	7.4程度	N46° E	北西側隆起の逆断層 (右横ずれ成分を伴う)	0	北西傾斜高角	0	0	15	17km程度	不明	-	4m程度	0.4	不明	9
	3	小湯	兵沖断層	33	Δ	7.4程度	N144° E	左横ずれ	0	ほぼ垂直	0	0	15	15km程度	45	Δ	3m程度	0.36	A一B級	9.1
	4	4 浦島礁北方北断層		40	0	7.5程度	N157° E	左横ずれ	0	ほぼ垂直	0	0	15	15km程度	23	Δ	4m程度	0. 18	B一C級	22
	5	5 若狭海丘列北縁断層		21	Δ	7.0程度	N73° E	南側隆起の逆断層	Δ	南傾斜低角	0	1.5	15	27km程度	113	Δ	2m程度	0.37	B級	5.7
西部	6	6 越前岬西方沖北断層		38	0	7.5程度	N60° E	北西側隆起の逆断層 (右横ずれ成分を伴う)	0	北西傾斜高角	0	0	15	17km程度	188	Δ	4m程度	0. 42	B級	9.1
	7	浦島礁北東断層		23	0	7.1程度	N147°E	左横ずれ	0	ほぼ垂直	0	0	15	15km程度	15	Δ	2m程度	0.12	B-C級	19
	8-1	ゲンタツ瀬・	ゲンタツ瀬区間	20	0	7.0程度	N47° E	北西側隆起の逆断層 (右横ずれ成分を伴う)	0	北西傾斜高角	0	0	15	17km程度	不明	-	2m程度	0.3	不明	6
	8-2	大グリ南東縁 断層帯	大グリ区間	35	0	7.4程度	N41°E	北西側隆起の逆断層 (右横ずれ成分を伴う)	0	北西傾斜高角	0	0	15	17km程度	不明	-	4m程度	0.3	不明	10
	8		全体		0	7.7程度	N49°E					1					-			
	9	加佐。	/ 岬沖断層	25	0	7.2程度	N40°E	南東側隆起の逆断層	0	南東傾斜高角	0	0	15	17km程度	180		3m程度	0.34	B級	7.3
	10	0 羽咋沖東断層		30	0	7.3程度	N4°W	西側隆起の逆断層	0	西傾斜高角	0	0	15	17km程度	91	Δ	3m程度	0.17	B級	17
	11	11 羽咋沖西断層		21	0	7.0程度	N9°E	西側隆起の逆断層	0	西傾斜高角	0	0	15	17km程度	135	Δ	2m程度	0.26	B級	8. 2
	12	12 内灘沖断層		29	0	7.3程度	N29° E	南東側隆起の逆断層	0	南東傾斜高角	0	0	15	17km程度	225	Δ	3m程度	0. 43	B級	6.8
	13	海士山	海士岬沖東断層 21 〇 7.0程度		7.0程度	N36° E	南東側隆起の逆断層	0	南東傾斜高角	0	0	15	17km程度	14	Δ	2m程度	0.87	A一B級	2.4	
	14-1		門前沖区間	23	Δ	7.1程度	N62°E	南東側隆起の逆断層 (右横ずれ成分を伴う)	0	南東傾斜高角	0	0	15	17km程度	17	Δ	2m程度	1.3	A級	1.8
	14-2	门刖断層帝	海士岬沖区間	18	0	6.9程度	N34°E	南東側隆起の逆断層	0	南東傾斜高角	0	0	15	17km程度	56	Δ	2m程度	0.11	B-C級	17
	14	全体		38	Δ	7.5程度	N46°E		1		r	1			1	1				
	15	沖ノ瀬東方断層		35	0	7.4程度	N33° E	南東側隆起の逆断層	0	南東傾斜高角	0	0	15	17km程度	3	Δ	4m程度	0.19	B級	18
	16-1		猿山沖区間	24	0	7.1程度	N47°E	南東側隆起の逆断層	0	南東傾斜中角	0	0	15	21km程度	30		2m程度	2.4*	A級	2/± ///
	16-2	能登半島北岸 断層帯	輪島沖区間	23	0	7.1程度	N77°E	南東側隆起の逆断層	0	南東傾斜中角	0	0	15	21km程度	26	Δ	2m程度	2.0*	A級	2 ^{/± / /)}
巿	16-3	NUE IV	朱洲冲区间	4/	0	/. 6程度	N58° E	南東側隆起の速断層	0	南東傾斜中角	0	0	15	21km程度	个明	_	5m程度	2	个明	2
部	10			94	0	7.8-8.1程度~~~~	N57 E	キキ別政力などが良	~	++ 태어 + 6	~	0	15	011 50 55			0.10.00	0.0		10
	17			24	0	7.1程度	N53 E	用果側隆起の逆断層	0	用果傾料 中 用	0	0	15	21Km程度	个明	_	2m程度	0.2	个明	12
	18	能登牛島	与北方冲断磨	31	0	7.3程度	N45° E	南東側隆起の速断層	0	南東傾斜中角	0	0	15	21km程度	个明	-	3m程度	0.2	个明	76
	19-1		南西区間	41		7.5程度	N59" E	北西側隆起の速断層	0	北西傾斜中角	0	0	15	21km程度	13	Δ	4m程度	0.15	B敝	27
	19-2	層帯	北東区間	23	Δ	/.1桯度	N55° E	北西側隆起の逆断層	0	北西傾斜中角	0	0	15	21km程度	不明	-	2m程度	0.2	不明	15
	19		全体	64	0	7.8程度	N57°E				r	1			1	1				
	20-1	七尾湾直方断	大泊鼻沖区間	25	Δ	7.2程度	N6°E	西側隆起の逆断層	0	西傾斜中角	0	1	15	20km程度	27	Δ	3m程度	0. 41	B級	6.2
	20-2	G/E/房来力断 層帯	城ヶ崎沖区間	21	Δ	7.0程度	N44°E	北西側隆起の逆断層	0	北西傾斜中角	0	1	15	20km程度	41	Δ	2m程度	0. 49	B級	4.3
	20		全体	43	Δ	7.6程度	N24°E		–		r	1			1	1				
	21	飯田海脚南縁断層		31	0	7.3程度	N76° E	北側隆起の逆断層	0	北傾斜中角	0	1	15	20km程度	不明	-	3m程度	0. 1	不明	31
	22	富山トラ	ラフ西縁断層	61	Δ	7.8程度	N23°E	西側隆起の逆断層	0	西傾斜中角	0	1.5	15-20	19-26km程度	不明	_	6m程度	2	不明	3
	23	23 富山トラフ横断断層		20	0	7.0程度	N65° E	北西側隆起の逆断層	0	北西傾斜中角	0	1.5	15-20	19-26km程度	100		2m程度	0.63	B級	3.2

平均変位速度や平均活動間隔の列の斜体の数値は、近辺の類似断層からの類推値で有効数字は1桁、信頼度は不明である。各断層の詳細は説明文4章の各断層に関する文章を参照。

※ ここには、最終氷期侵食面における上下変位量に基づく値を記載している。

- 注1:気象庁では、令和6年(2024年)1月1日に発生した M7.6 の地震を含む、令和2年(2020年)12 月から石川県能登地方で継続している地震活動のことを「令和6年能登半島地震」と命名している。
- 注2:評価文中では、各々の評価の信頼度に対応した文末表現を用いている。信頼度と文末表現との関係 については、「付録1 文章中の信頼度、幅などの表現について」を参照のこと。
- 注3:本評価では、既存の活断層の地域評価(地震調査研究推進本部地震調査委員会長期評価部会,2010; 地震調査研究推進本部地震調査委員会,2013a,2015,2016a,2017)と同様、地表に断層活動の痕跡が 確認できる「固有地震」(注4)以外に、評価対象とした活断層において断層活動の痕跡を認めにく い地震が発生する確率も評価している(詳細は付録7-1を参照)。なお、本評価対象海域では、活 動履歴に関する地質学的データを得ることが難しいため、平均変位速度の推定に評価対象海域内を 代表すると考えられる推定値を用いており、個別の断層に特化した評価になっていないことから、 個々の活断層が活動する場合の確率は参考とし、表1-1には記載しない。また、ここでは、それ ぞれの地震の発生確率の合算に基づく値を、有効数字1桁(10-20%に確率が収まる場合は、有効 数字2桁)で表記している。
- 注4:「固有地震」とは、同時に活動すると想定される「活断層帯」や「評価単位区間(詳細は「付録2 1 回の地震に対応して活動する断層の長さの評価の考え方」参照)」の全体が活動する固有規模の地震 のことである。Schwartz and Coppersmith (1984, 1986)が提唱した Characteristic earthquake model につ いて、垣見(1989)が「個々の断層またはそのセグメントからは、基本的にほぼ同じ(最大もしくは それに近い)規模の地震が繰り返し発生すること」と解釈しているものである。
- 注5:本評価では、断層(評価単位区間)の片方の端点位置からもう一方の端点の位置の方向を断層の走 向とした。
- 注6:断層上端の深さは、海底の水深の値を 500 m の区間ごとに、500 m の倍数に切り下げて表示した。
- 注7:変位基準面の上下変位量(累積した上下変位量)は、正確性を期すため反射断面図の時間軸(往復走時)で読み取った値を記載している。中期更新世の地層の基底を基準面とし、それに相当する反射面から読み取った場合は信頼度を△とした。中期更新世に相当する地層が欠如し、より古い地層を基準面とした場合は信頼度を▲とした。また、変位基準面とする地層が欠如していたため近隣断層から類推した場合は信頼度を付さないこととした。上下変位量の読み取りの詳細は付録3を参照のこと。
- 注8:1回のずれ量は断層長さの1万分の1(松田ほか,1980)として求めたため、その信頼度は断層長さの の信頼度以下とした。ここでは有効数値1桁で表記している。
- 注9:平均変位速度ならびに平均再来間隔の算出に用いられている基準面の堆積年代や横ずれ/縦ずれ比に は推定幅があるが、表1-2では、それらの中央値を用いて算出された値を示している。推定幅を 考慮した値は、表6を参照のこと。
- 注 10: 複数の単位区間から成る長大な活断層帯が一度に 80 km の長さを超えて活動する場合は、松田(1975) の式から正しく地震の規模が推定できない可能性がある(地震調査研究推進本部地震調査委員会長 期評価部会, 2010)。そのため、「3.(1)-2 想定される地震とその規模」のとおり、80 km の 長さを超える場合は、武村(1990)の式も用いて規模を算出している。
- 注11:猿山沖・輪島沖区間では、探査断面図の上下変位量から算出した平均活動間隔は千年程度になるが、 海成段丘面から最近6千年間に3回の活動がみられることと倍以上の乖離となるため、段丘面から の推定平均活動間隔2千年を確率等の計算に用いることとした。

(説明文)

1. 評価対象活断層

(1)評価方針

日本海中南部における海域活断層の長期評価では、兵庫県、京都府、福井県、石川県、富山県の北方沖を含む海域を評価対象海域とした。

地震調査研究推進本部では、平成9年に策定した「地震に関する基盤的調査観測計画」に おいて、その活動が社会的、経済的に大きな影響を与えるとして、断層長さ20km(M7.0程 度)以上又はそれに準じることを基準の一つとして活断層の調査を行ってきた。また、沿岸 海域活断層調査の対象については、沿岸から30kmの距離に分布する全長20kmの活断層 が活動した場合、陸域で震度6弱以上となり、陸域に被害を与える可能性があるため、沿岸 海域の主要活断層帯として選定する基準として、陸域から30km以内の沿岸域にその全部 もしくは一部が分布する、長さ20km以上に及ぶ活断層帯が挙げられている(地震調査研 究推進本部政策委員会調査観測計画部会,2009)。さらに、海域において発生する地震による 津波では、海岸における高さ1-2m程度の津波で、住家に床下浸水等の被害がみられるが (気象庁,2012)、1949年以降に発生した地震においては、M7.0未満の規模の地震では、最 大津波波高が1mを超える津波が海岸で広く観測された事例はない(付録4)。

以上の主要活断層帯及び沿岸海域の主要活断層帯の選定基準や陸域への地震・津波被害 を踏まえて、断層長さ 20 km 程度以上の海域活断層を主な評価対象とし、海域活断層ごと に位置・長さ・形状・活動度などを評価した。さらに、本評価対象海域に分布する海域活断 層で発生する地震を総合的に評価するため、評価対象海域全体や各区域内の海域活断層の いずれかを震源とする M7.0 以上の地震が発生する確率を評価した。ただし、郷村断層帯、 野坂・集福寺断層帯、柳ヶ瀬・関ヶ原断層帯、福井平野東縁断層帯、呉羽山断層帯について は、海域延長部が評価対象海域に位置しているものの、陸域の主要活断層の長期評価(例え ば、地震調査研究推進本部地震調査委員会,2004) で評価されているため、本評価では断層 特性の評価や、地域評価としての確率評価の対象には含めないこととした(注 12)。なお、 本評価文では特に断らない限りマグニチュード(M)は気象庁マグニチュードを用いている。

(2)評価区分

本評価では、評価対象海域内の海域活断層のうち、既存の陸域の活断層の長期評価で評価されていない長さ20km程度以上の断層を「評価対象の海域活断層(帯)」として評価した。評価対象海域に存在する陸域の主要活断層帯の海域延長部の断層については、陸域の地域評価で検討を行う。その他、長さ20km程度未満の断層であっても確実に活断層と認定できるものについては、「海域の短い活断層」として位置と長さを評価した(表2)。なお、本評価対象海域に位置する既存の研究で活断層と判断された断層線(注13)のうち、反射断面で断層構造が認められないものや明らかに新期の活動が認められない地質断層などは、活断層と認定しなかった。本評価の評価様式を表3に示す。

(3)海域活断層の認定に用いたデータ

一般に海域における活断層の認定は、海底地形データ及び反射法地震探査で得られた反

射断面に基づいて行われてきた(例えば、徳山ほか,2001; 岡村,2000,2008)。変動地形が海 底に顕著に現れており、詳細な海底地形図を利用することができる場合には、地形データに 基づいて断層線を正確に認定できるが、本評価対象海域では変動地形から明瞭に確認でき る断層は限られ、詳細な海底地形図も全域で十分に整備されている状況ではない。そのため、 本評価では、詳細な海底地形データが利用できる一部の海域ではそれを活用したが、ほぼ全 ての活断層を反射断面に基づいて認定した。

本評価で活断層の認定に用いた反射断面は以下のとおりである。

国立研究開発法人産業技術総合研究所(当時は通商産業省工業技術院地質調査所だが、 本評価では現行機関名称の産業技術総合研究所に統一する)は、1987年及び1988年に兵庫 県の北方沖から能登半島周辺海域で、海岸からおおよそ 100-150 km 程度までの範囲で、 3-6 km 程度の間隔の格子状の測線に沿ってエアガンを音源とするシングルチャンネル反 射法地震探査を実施した(図3-1)。また、能登半島北部の西方沖から北岸沖 10-30 km では約2 km 間隔の測線に沿ってブーマーを音源とする高分解能マルチチャンネル音波探査 や浅海域の詳細な海底地形調査を実施している(図3-2)。

断層深部の構造解明を目的とした大規模なマルチチャンネル反射法地震探査が、測線数 は少ないが、「ひずみ集中帯の重点的調査観測・研究プロジェクト」(文部科学省研究開発局・ 防災科学技術研究所, 2013)及び「日本海地震・津波調査プロジェクト」(文部科学省研究開 発局・東京大学地震研究所, 2014, 2016, 2017, 2021)によって実施されてきた(図3-1)。

測線間隔は 20 km 以上であるが、資源探査を目的とした大容量エアガンを音源とするマ ルチチャンネル反射法地震探査がエネルギー・金属鉱物資源機構によって本評価対象海域 の全体にわたって実施されている。

「海域における断層情報総合評価プロジェクト」(文部科学省研究開発局・海洋研究開発 機構, 2020) では、断層の活動性についての評価は行っていないが、上記によって得られた 反射断面及び断層情報を含むデータを収集・整理し、活断層とそれに伴う地震動・津波の評 価のための基礎資料として整備しており、本評価でも上記の反射断面や断層情報の確認の ために活用した。

さらに、若狭湾とその周辺海域では、海上保安庁(海上保安庁海洋情報部,2004)、関西 電力株式会社、日本原子力発電株式会社、日本原子力研究開発機構などが、活断層調査のた め様々な音源を用いた音波探査を実施している。本評価ではこれらのデータを直接用いる のではなく、杉山ほか(2013)が上記調査データも参照してとりまとめた若狭湾とその周辺 の海域活断層の分布図を参照した。また、能登半島西方沖の海域では北陸電力株式会社が、 活断層調査のためウォーターガンやスパーカーなどを音源に用いた音波探査を実施してお り、それらのデータに基づいた活断層分布図も参照した(例えば、北陸電力株式会社,2022)。

これらの調査で用いられた探査システムはそれぞれ仕様が異なり、分解能や探査深度が 異なる。産業技術総合研究所のシングルチャンネル反射法地震探査から得られた反射断面 は、条件が良い場合には5m程度以上の上下変位量を認定することができる。その探査深度 は地質条件によって異なるが、海底下数十から数百m程度である(岡村,2019)。スパーカ ーやウォーターガンを音源とする反射断面は、エアガンを音源とする反射断面より分解能 がやや高く、探査深度は小さい。ブーマーを音源とする高分解能のマルチチャンネル音波探 査は1m程度以下の分解能を持ち、探査深度は数十m程度である。これらの反射断面と比較すると、深部構造や石油資源の探査を目的としたマルチチャンネル反射断面の分解能はかなり低いが、探査深度は数km以上に達する。ただし、実際の分解能や探査深度は、同じ探査システムでも地質条件や調査時の海況によって大きく変化する。

なお、海域活断層の分布は主に産業技術総合研究所の地震探査に基づいているが、水深の浅い沿岸域には幅3-8km程度の調査測線の不足領域があり(図2-1、注14)、その中では断層の有無を確認できていない。

また、主要活断層帯である郷村断層帯の海域延長部周辺では阿部ほか(2012)によって、 柳ヶ瀬・関ヶ原断層帯では杉山ほか(2013)によって、福井平野東縁断層帯では阿部ほか

(2011)によって、ブーマーを音源とする高分解能マルチチャンネル音波探査や浅海域の詳細な海底地形調査などが行われているが、これらの断層は別途、地震調査研究推進本部による活断層の地域評価(以下「活断層の地域評価」という)において検討している。

(4)海域活断層の認定

日本海における海域活断層の認定は、海底地形及び反射法地震探査から得られた反射断 面を用いて実施されてきた。日本海東縁海域では逆断層が主体であるため、断層上盤の隆起 地形と背斜構造が地形及び反射断面で明瞭に認定されてきた。一方で、西南日本の日本海側 では横ずれ断層が主体であるため、海底に明瞭な変位地形を認めにくく、従来は活断層の分 布がほとんど知られていなかった(例えば、活断層研究会,1980,1991)が、海底直下の地層 に活断層の存在を示す小規模な上下方向の地層の変位や変形が累積していることが、Itoh et al. (2002)、海上保安庁海洋情報部 (2004)、阿部ほか (2010a, 2010b)等によって報告され、 その後、産業技術総合研究所の反射断面の再解析によって同じような変位が広範囲に分布 することが明らかになってきた(日本海における大規模地震に関する調査検討会,2014;岡 村ほか,2014; Okamura, 2016; 岡村,2019)。地震調査研究推進本部地震調査委員会(2022) は、日本海南西部でさらに詳しく反射探査データの解析を行い、長さ 20 km 以上の活断層 の評価を実施した。

本評価対象海域には横ずれ断層と逆断層が共存するが、上記の公表されている資料の反 射断面の解釈及び断層線を参考にしつつ、利用可能な反射断面及び海底地形データを用い て海域活断層を認定・評価した。活断層の認定は、原則として中期更新世の地層に注目し、 地層が明瞭に切断されているものだけでなく、地層の撓曲、傾動など堆積構造として説明で きない形状も活断層と判断した。若狭湾内では中期更新世の地層が厚く、その下部で断層変 位が認められても、海底下 100 m 程度の地層中に変形が認められない場合には、活動が停 止したと判断した。図4に評価対象の海域活断層(帯)の断層線及び断層線をまたぐ反射法 地震探査測線の反射断面例(図5-1及び図5-2)の位置を示す。ただし、探査システム の仕様の差異などによって反射断面の分解能や探査深度が異なるため、評価対象海域全体 を同一の判断基準で認定できているわけではない。また、既に公表されている文献などで活 断層と判断されている断層であっても、反射断面で観察できる地下の地層の曲がりが地層 の圧密など断層変位以外の原因で形成されたと判断できる場合や、確認できる変位の連続 性が乏しいなどの理由で、活断層ではないと判断した場合には、「可能性のある構造」ある いは「可能性の低い構造」とした(評価対象としなかった構造については付録9を参照)。 断層の深部構造については、可能な限りマルチチャンネルの反射断面を参照したが、既 存の断層モデルや、浅部における反射断面から推定した断層面の形状及びその周辺の地層 の傾動や背斜構造を考慮して推定した。また、海域活断層の評価単位区間の設定は、反射断 面で観察される構造的特徴の変化も考慮した。

2. 海域概観とこれまでの主な調査研究

(1)評価対象海域の地形と地質構造発達史

評価対象海域のうち、兵庫県北方沖から能登半島北方沖までの海底は、水深 150 m 以浅 の大陸棚と、その沖の水深 500 m 程度までの縁辺台地の2段の平坦面が広がり、その沖で 水深 1000 m 以上の海盆になる。大陸棚の幅は、兵庫県から丹後半島の北方沖で約 10 km、 若狭湾で 20 km 前後、福井県越前岬沖では5 km 以下となるが、その北側で 15-30 km、能 登半島北方沖では最大 50 km に達する。縁辺台地の幅は場所によって大きく変化し、兵庫 県北方沖で約 30 km、丹後半島北方で約 50 km、福井県北部沖から能登半島北方沖でも最大 で 50 km 以上に達する。その沖の主要な海盆は兵庫県北方沖から能登半島西方沖の隠岐舟 状海盆(以下「隠岐トラフ」という)、能登半島北方沖には大和海盆が広がる。能登半島東 方沖の大陸棚の幅は一部で 10 km を超えるが、大部分は5 km 以下である。その東方沖から 富山湾には水深 1000-1500 m に達する富山舟状海盆(以下「富山トラフ」という)が南北 から南西に方向を変え連続する(図6)。

海底地形は全体的に起伏が少ないが、隠岐トラフと富山トラフの縁辺部には急斜面が連続する。また大陸棚には、丹後半島の北東沖に浦島礁、越前岬の北方沖にはゲンタツ瀬、松 出シ、大グリなどの北東-南西方向に延びる地形的高まりが形成されている。それらの北方 に広がる縁辺台地の外縁には、若狭海丘列が北東-南西方向に延びる。能登半島西方沖に分 布する前ノ瀬、中ノ瀬、沖ノ瀬、長平礁などの高まりは、方向性が不明瞭である。

日本列島は、ユーラシア大陸沿岸に沿って形成されていた火山弧が漸新世から中期中新 世に大陸から分離し、太平洋側に移動することによって成立し、日本列島と大陸の間が沈降 して日本海となった(例えば、中嶋,2018)。日本海は全体が一様に沈降したのではなく、複 数の沈降域が形成され、それらの間には大陸の一部が地形的高まりとして分布していた。ユ ーラシア大陸側ほど沈降域の規模が大きく、日本列島側に向かって沈降域の規模が小さく なる傾向がある。評価対象海域北側の隠岐トラフと大和海盆は、日本海形成時の沈降域がほ ぼそのまま残されていると考えられる。また、東側の富山トラフも基本的には日本海形成時 の沈降域の構造を反映していると考えられる(竹内,2021)。

鳥取県北方沖から石川県西方沖の縁辺台地には、中新世以降の厚さ2000mに達する海成 層が伏在することが明らかになっており(田中・小草, 1981; 岩崎, 1992)、この海成層の分 布域は、陸域の金沢付近から富山平野まで連続し、沈降帯が形成されたと考えられる。

一方、陸域の兵庫県から福井県の沿岸部は、漸新世から中新世の火成岩やより古い中古 生界が地表に露出しており、それらの分布域は北東側へ石川県金沢市東方の医王山付近か ら富山県の飛騨山地北縁までつながる(産業技術総合研究所地質調査総合センター,2025)。 この領域より南側では、中新世以降の海成層がほとんど分布しないことから、日本海形成時 も大きくは沈降しなかったと考えられる。

能登半島の南部と北東部にも中新世の海成層が分布し、海域であったことを示すが、半 島内には中生代の深成岩や変成岩が小規模ながら露出し、広く古第三紀から新第三紀の非 海成層や火成岩が分布する(産業技術総合研究所地質調査総合センター,2025)ことから、 半島のかなりの部分では大きく沈降しなかったと推定される。能登半島の北方沖も堆積層 がほとんど分布しない地形的な高まりが広がっており(岡村ほか,2002,2007)、日本海の形 成時にも地形的な高まりであったと推定される。ただし、能登半島北岸沖に沿って堆積物が やや厚い領域が連続することから(吉川ほか,2002;井上・岡村,2010)、沈降帯が形成され ていたと推定される。

能登半島の東側を南北に延びる凹地の富山トラフの成因は単純ではないが、東北日本と 西南日本の構造発達史の重要な境界で、その原型は日本海の形成時にできていたと考えら れる。その南方延長に糸魚川-静岡構造線と北部フォッサマグナがある。南部で南西に延び る凹地が富山湾に連続し、さらに南西に延びて富山平野から金沢へ抜ける沈降帯に接続し ていたと推定される。重力異常図でも佐渡南方から富山湾を経て金沢の西方沖へ続く、低重 力異常帯が認められる(図7-1及び図7-2)。

これらの中新世の海成層の分布によって示される沈降帯は、日本海形成時の引張応力場 で形成された正断層に伴う地溝状の低地(リフト)であったと推定される。日本海形成時の 評価対象海域には、正断層によって生じた沈降帯とそれらの間の地形的高まりが共存して いたと考えられる。

後期中新世末期から鮮新世初期には、フィリピン海プレートが北に向かって沈み込みを 開始したことによって南北方向の圧縮応力が強まり、リフトを形成した海岸沿いの正断層 が逆断層として再活動したと考えられている(Itoh and Nagasaki, 1996)。その結果、リフト を覆った海成層は隆起し、背斜構造が発達した。この変動を受けた領域は宍道褶曲帯と呼ば れ(Otsuka, 1939)、島根半島北部で陸上に露出するが、大部分は海底に分布し、西は九州北 西沖から能登半島周辺まで確認されている(Itoh and Nagasaki, 1996;田中・小草, 1981;山本 ほか, 1989, 1993; Yamamoto, 1993;岡村ほか, 2002, 2007、図8)。それらの隆起した背斜構造 は海水準付近で侵食され、平坦面が広く形成された。鮮新世以降は褶曲帯の成長はほぼ停止 し、侵食平坦面とその陸側の沿岸部も含めて緩やかに沈降して鮮新世から第四紀の地層に 覆われた。後期中新世から鮮新世初期に形成された断層や背斜構造は、海底地形にはほとん ど現れていないが、重力異常図には高異常帯として確認できる(図7-1及び図7-2)。 鮮新世以降には顕著な断層・褶曲活動は知られていないが、島根半島の東側では宍道褶曲帯 の形成後に北西への傾動ブロックが成長していることが報告されている(Yamamoto, 1993)。

日本海中南部及びその西側の第四紀以降の活断層の存在については、三澤(1997)が能登 半島北岸沖で報告し、Itoh et al. (2002)が鳥取沖の宍道褶曲帯の中の逆断層が第四紀に右横 ずれ活断層として再活動していることを指摘した。また、能登半島には北部に向かって高度 を増す更新世の海成段丘が広く形成されていることから、傾動隆起が最近も継続している ことが指摘されていた(太田・平川, 1979)。若狭湾とその周辺の陸域には、活断層が多く存 在することが知られていたが(活断層研究会, 1991;地震調査研究推進本部地震調査委員会, 2003a, 2003b, 2004)、海域活断層については、海上保安庁海洋情報部(2004)や電力会社の 調査報告があり、それらを杉山ほか(2013)がまとめている。平成19年(2007年)能登半 島地震(M6.9)は能登半島北西部の海岸付近を震源として発生したが(Sakai et al., 2008)、 その地震は能登半島西方沖の海底活断層で発生したことが確認され(井上ほか, 2007;泉ほ か, 2008)、震源断層の深部構造は佐藤ほか(2007a, 2007b)で明らかにされている。片川ほ か(2005)は、この断層を含む複数の断層の存在を報告し、その活動時期を検討している。 平成19年(2007年)能登半島地震後には、能登半島北岸沖の海底にも活断層が分布するこ とが井上・岡村(2010)、後藤(2012)などによって指摘されていた。その後、既存の調査 データの再解釈から、能登半島以西の海域にも多くの活断層が分布することが明らかにな ってきた(日本海における大規模地震に関する調査検討会, 2014;岡村, 2019など)。また、 本評価対象海域に分布する断層の深部構造も大規模な反射法地震探査によって明らかにさ れ、日本海の拡大時の断層と活断層の関係が示されてきた(文部科学省研究開発局・東京大 学地震研究所, 2021; Ishiyama et al., 2017a, 2017b)。2024年1月1日の石川県能登地方のM7.6 の地震は、地震発生前に存在が指摘されていた能登半島北岸沖とその周辺に分布する海域 活断層が、約150 kmの範囲にわたって活動したと評価されている(地震調査研究推進本部 地震調査委員会, 2024)。

(2) 地震活動

(2) - 1 地震観測

概要

日本海中南部の海域で発生する地震は、沿岸部の浅い場所(深さ約30km以浅)で発生す る地震(以下「浅い海域の地震」という)が多い。ここでは、主に活断層の活動に関係する 地震として、気象庁震源カタログ(注15)を用いて1997年から2024年までの27年間の浅 い海域の地震の地震活動について述べる。

日本海中南部の海域を中心とする地域の深さ 30 km 以浅で発生した地震の震央分布を図 9に示す。日本海中南部ならびにその近傍では、2007 年3月 25 日に発生した平成 19 年 (2007年) 能登半島地震(M6.9、震源の深さ約 11km、最大震度6強)、2024年1月1日に 石川県能登地方で発生した地震(M7.6、震源の深さ約15km、最大震度7)など陸域で被害 を伴う地震が発生したが、東北地方の太平洋側あるいは日本海東縁部等に比べて地震活動 は低調である。浅い海域の地震の発震機構は、西側では西北西-東南東方向あるいは東西方 向に圧力軸を持つ横ずれ断層型が多いが、北東に行くに従って縦ずれ成分が大きくなって いき、東側では逆断層型が多く分布している(図 10-1、図 10-2及び図 10-3)。最近 27 年間に浅い海域で発生した M3.0 以上の地震について、規模別頻度の関係式(グーテン ベルク・リヒターの式、以下「G-R式」という)を適用すると、その係数(b値)は 0.8 程度と推定される(図9)。ただし、東部区域では平成19年(2007年)能登半島地震、2024 年1月1日に石川県能登地方で発生した地震に伴う活動に加え、2020年12月から継続して いる群発地震活動など、能登半島北部の地震数が極めて多いことに注意が必要である。また、 これらの地震の震源情報は、海域の地震に対して陸の観測点のデータのみを用いて推定し ているため、陸域の地震を対象にした場合に比べて微小地震の検知能力や震源決定精度(特 に深さ方向)、初動による発震機構解の決定精度が相対的に低いことに留意されたい。

西部区域

西部区域には、陸域の主要活断層帯の海域延長部が多数分布しており、例えば郷村断層帯 の海域延長部には 1927 年北丹後地震の、福井平野東縁断層帯の海域延長部には 1948 年福 井地震の、野坂断層帯の海域延長部では、1963 年越前岬沖地震のそれぞれ余震活動と考え られる地震活動が見られる。また、越前岬西方沖北断層の周辺など、若狭湾の外寄りにも地 震活動がみられ、これらは歴史時代に発生した大聖寺沖や大聖寺付近とされるいくつかの 被害地震の余震活動である可能性もある。

東部区域

東部区域では、特に能登半島北部沿岸域を中心に近年の活発な地震活動が見られる。能登 半島北東部の珠洲市では、2018年から深部起源の水が地下に伏在する古い火山カルデラよ り上昇して、次第に北~北東方向の浅い部分へと移動してきたことに伴って(例えば、 Nishimura et al., 2023)、2020年12月から多数の有感地震が発生するようになった。2021年 9月16日にM5.1、2022年6月19日にM5.4、2023年5月5日にM6.5の地震と、次第に大 きい地震が発生するようになり、2024年1月1日、能登半島北岸断層帯全区間を震源とす るM7.6の地震が発生して大きな被害が生じた。

(2)-2 過去の主な地震活動及び被害地震

概要

この海域を震源とする M7 以上の被害地震は、近世以降の最近 400 年間では、震源域の 半分が海域に及んだ 1927 年北丹後地震(M7.3)、2024 年1月1日の石川県能登地方の地震

(M7.6)の2つしか知られていないが、M7未満の被害地震は多数発生している。これらの 地震の中には、本評価の海域活断層以外にも、主要活断層帯の海域延長部の一部を破壊して 発生したものを含む可能性もある。

本評価地域は、これより北東に位置する新潟以北の日本海側に比べて地震活動は低調で あるが、局地的な被害を生じる評価対象規模未満の地震は多い(表4)。日本海中南部の海 域で発生した浅い地震の主な地震活動及び被害地震について、史料及び地震観測結果に基 づき整理した結果を図11及び表4に示す。史料は、地域や時代によって残存する量の多寡 が異なり、ある期間に地震の発生がないように見えても、それはその期間の史料がないこと による見かけ上のものである可能性もあり、地震発生がなかったことを必ずしも示してい るわけではない。特に海域を震源とする地震については、顕著な被害を伴う強震動あるいは 津波を伴わなかった場合、史料に記録が残らない可能性がある。

西部区域

本区域で発生した被害地震としては、震源域の北半分が海域に延びていた 1927 年北丹後 地震(M7.3)が最大である。この地震は地表地震断層を伴ったことが知られており、峰山町 (現・京丹後市)などに多数の家屋倒壊や火災の激甚な被害をもたらした。このほか、海域 で発生したため、周辺の沿岸部を中心に、液状化や道路・堤防、構造物の破壊などの被害を 生じた地震として、野坂断層帯の海域延長部が活動した可能性がある 1963 年越前岬沖地震 (M6.9)、ゲンタツ瀬・大グリ南東縁断層帯の大グリ区間の一部が震源域だった可能性があ る 1952 年大聖寺沖の地震(M6.5)のほか、1930 年大聖寺付近の地震(M6.3)、2000 年石川 県西方沖の地震(M6.2)が知られており、1640 年大聖寺付近の地震も海域で発生した可能 性がある。また、若狭湾周辺には、本評価で対象とした海域活断層以外にも陸域活断層の海 域延長部が複数分布しており、陸域と合わせて地震危険度を考慮する必要がある。

東部区域

本区域で発生した被害地震としては、2024年1月1日に石川県能登地方で発生した M7.6 の地震が最大である。近世で震源がある程度絞り込める地震としては、輪島市町野町周辺に 被害を与えた1729年享保能登の地震(M6.6)がある。その規模は能登半島北岸断層帯の輪 島沖区間の一部が破壊した程度である(図12)。七ツ島の北方沖を震源として発生した1985 年(M5.7)の地震では、輪島市内で橋の破損が生じた。この他、能登半島西側の羽咋沖では、 1892年12月に2日間の間に M6.4と M6.3の地震が発生し、北東側の禄剛崎沖では1896年 には M5.7、1993年には M6.6、七尾湾沖では1933年に M6.0、輪島市の西方沖では、門前断 層帯門前沖区間で平成19年(2007年)能登半島地震(M6.9)が発生するなど、繰り返し被 害を被ってきた。2024年11月には、羽咋沖西断層の一部が活動した可能性のある M6.6の 地震も発生している。

3. 日本海中南部の海域活断層の長期評価手法

本評価対象海域における活断層の長期評価手法は「活断層の長期評価手法(暫定版)」(地 震調査研究推進本部地震調査委員会長期評価部会,2010)(以下「活断層の長期評価手法」と いう)に原則として準拠する。しかしながら、本評価対象海域では、トレンチ調査やボーリ ング調査のような個別の断層の活動履歴を精度よく把握するための地質学的調査はほとん ど行われておらず、既存の反射断面や数少ないボーリング調査結果から平均変位速度を陸 域のように推定することはできない。本評価では、評価対象海域の海域活断層による地震発 生確率を求めるために、反射断面上で年代が推定できる基準層の変位量を測定して、垂直方 向の平均変位速度を求め、地震データから推定した横ずれと縦ずれの比を用いて活断層の 平均変位速度を求めるなど、日本海南西部の長期評価と同様に、必ずしも活断層の長期評価 手法には基づかない手法も用いた。そのため、本評価で採用した評価手法について、以下で 詳細を説明する。

(1)海域活断層の特性の評価手法

(1) – 1 断層の位置、形状と評価単位区間の設定

断層線は、産業技術総合研究所の反射断面上で認定した活断層位置をマップ上に点とし て描き、上記の地質構造発達史で引用した今までに公表されている地質構造や活断層など の研究との整合性も考慮しつつ、測線間の連続性を判断して断層位置の点を結ぶことで作 成した。

断層の傾斜方向ならびに傾斜角については、深部構造が観察可能な反射断面(文部科学

省研究開発局・海洋研究開発機構,2020; 文部科学省研究開発局・東京大学地震研究所,2021 など)が存在する場合はそれを参照した。断層の深部形状を反射断面で確認することができ ない場合には、浅部の反射断面による断層及び断層に伴う地質構造、既存の研究成果による 断層モデル、周辺の地質構造などを考慮して推定した。

これらの信頼度については、次のように整理した。断層端点について、反射法地震探査 測線の格子間隔が5km程度以下の領域内にある断層端点の信頼度を○とし、それ以外は△ とした(信頼度と記号の関係については付表1を参照)。断層長さについては、両端の断層 端点の信頼度が○の場合には○とし、それ以外は△とした。断層の傾斜については、反射法 地震探査で深部の断層形状が確認されている場合には○、確認できない場合には△とした。

起震断層を分割する目安は、起震断層の長さが 40 km 程度を超える場合とした(地震調 査研究推進本部地震調査委員会長期評価部会,2010)。ただし、本評価対象海域では活断層の 活動履歴がほとんど明らかになっておらず、また断層線の詳細な形状は明らかになってい ないことから、「評価単位区間」の区間境界の設定は、断層周辺の地質構造など、間接的な 情報も活用して判断した。活断層やその評価単位区間の名称については、付録5に基づいて 設定した。

なお、隣接している活断層帯又は活断層は、部分的に同時に活動する可能性を否定できな いことに留意する必要がある。

(1) - 2 想定される地震とその規模

本評価では、(1) -1「断層の位置、形状と評価単位区間の設定」に基づき設定した評価単位区間が単独で活動する場合、又は断層帯を構成する評価単位区間全体が活動する場合を想定し、地震の規模を推定した。

想定される地震の規模については、活断層の長期評価手法において用いられている松田 (1975)による、断層長さと規模に関する以下の経験式を用いて推定した。

 $\log(L) = 0.6M - 2.9 \tag{1}$

ここで、*M*は地震の規模を示すマグニチュード、*L*は一回の地震で活動する断層の長さ(km) を示す。

ただし、複数の評価単位区間から成る長大な断層帯が、連動して一度に 80 km の長さを 超えて活動する場合には、式(1)から正しく地震の規模が推定できない可能性がある(地 震調査研究推進本部地震調査委員会長期評価部会, 2010)。そこで、断層帯全体の長さが 80 kmを越えた長大な活断層が活動した場合、活断層の長期評価手法に基づき、断層帯の長さ が断層幅の4倍となるまでは、式(1)によって規模を推定し、それを超える場合には、評 価単位区間の長さが断層幅の4倍を超えない「地震規模想定区間」の組合せを設定した。そ れぞれの地震規模想定区間から発生する地震の地震モーメント(M₀)を式(1)及び武村

(1990) による計算式

 $\log(M_0) = 1.17M + 10.72$ (2)

を用いて計算した上で、それぞれの地震規模想定区間の*M*₀の和を用いて、地震の規模を評価した。なお、地震規模想定区間の組合せは複数存在する場合があることから、断層全体の長さから式(1)により求められる*M*も合わせて、その中から最小値と最大値の*M*を本評

価における推定値とした。

(1) - 3 地震発生層の下限の深さならびに断層幅

本評価対象海域における評価対象の海域活断層(帯)は、いずれも反射断面の浅部(海底 直下)において変位が認められることから、上端の深さはほぼ0kmとした。ただし、断層 が水深 500m以上に位置する5断層帯(若狭海丘列北縁断層、七尾湾東方断層帯、飯田海脚 南縁断層、富山トラフ西縁断層ならびに富山トラフ横断断層)に対しては、断層位置におけ る水深を 500m 単位で丸めた上で断層の上端の深さとした。

一方で、断層の下端については地震発生層の下限の深さに基づいた。地震発生層の下限の 深さは、主に地震観測結果による地震の深さ分布から推定されている(地震調査研究推進本 部地震調査委員会,2013b,2016b)。しかしながら、本評価対象海域においては、定常的な地 震観測網は陸域のみに設置されているため、深さに関する震源決定精度ならびに微小地震 の検知能力は陸域に比べて低く、地震観測結果のみに基づき地震発生層の下限を推定する ことは容易ではない(例えば、文部科学省研究開発局・東京大学地震研究所,2014)。

これらの背景から、文部科学省研究開発局・東京大学地震研究所(2014)では、速度構造 や水深、構造的な変形特性から、日本海周辺の地殻構造を海洋地殻、厚い海洋地殻、背弧リ フト、及び大陸地殻に区分し(図13上図)、それらのレオロジー特性や地震活動を考慮して 地震発生層の下限の深さを推定した(図13下図、表5)。厚い海洋地殻、背弧リフト、及び 大陸地殻の地震発生層の下限の深さは表5のようになる。また、文部科学省研究開発局・東 京大学地震研究所(2014)では、厚い脆性領域と薄い脆性領域の境界の断層は、薄い脆性領 域の深さに規制されるとしている。なお、大陸地殻に分類される領域で発生した平成19年

(2007 年)能登半島地震(M6.9)の際の地震活動に対して、臨時観測点を含めて震源決定 された地震活動の深さは15km以浅に分布し(Sakai et al., 2008、図14)、文部科学省研究開 発局・東京大学地震研究所(2014)による地震発生層の下限の深さと整合的である。

これらの既往研究に基づき、本評価では地震発生層の下限の深さを文部科学省研究開発 局・東京大学地震研究所(2014)の各地殻構造区分の値ならびに2024年1月1日の石川県 能登地方の地震(M7.6)後の地震活動の震源分布を参照して、断層下端の深さを地震発生層 の下限の深さに基づいて設定した(表1-2)。また、厚い脆性領域と薄い脆性領域の境界 に位置する断層に対しては、薄い脆性領域の深さに規制されるとして設定した。なお、2024 年1月1日の石川県能登地方の地震(M7.6)に伴う地震活動について、海陸観測網を用いた 震源分布が明らかにされており、富山トラフ西縁断層周辺では15kmよりもやや深い18km 程度まで地震活動が見られている(Shinohara et al., 2025、図15)。そこで本評価では、富山 トラフ西縁断層における地震発生層の下限の深さを15~20km程度と評価した。

これらから、断層の下端の深さが B (km)、断層の上端の深さが T (km)、断層の傾斜角 が θ である場合の断層幅 W (km) について、以下の式により推定した。

 $W = (B - T) / \sin \theta \qquad (3)$

断層面の幅の信頼度は、断層の上端の深さ、断層の下端の深さ、断層面の傾斜、3つの信頼 度が全て○の場合は○とし、3つの信頼度に△が1つ以上含まれる場合は△とした。なお、 本評価では、断層面の傾斜角 θ について、ほぼ垂直を 90 度、高角を 60 度、中角を 45 度、 低角を30度と設定してWを求めた。

(1) - 4 過去の活動における1回の変位量(1回のずれの量)

本評価対象海域における活断層は海底に位置しており、詳しい地形・地質調査がほとんど できないため、過去の活動による1回のずれの量に関する情報はほとんど得られていない。 そのため、本評価では、活断層の長期評価手法に従い、1回のずれの量(注16)を評価単位 区間の長さから補助的に推定する手法に基づき、以下の経験式(松田ほか,1980)を用いて 推定した。

 $D = 10^{-1}L \qquad (4)$

ここで、Dは1回の活動に伴う変位量(m)、Lは1回の地震で活動する断層の長さ(km) であり、ここでは評価単位区間の長さを用いた。主要活断層帯の長期評価においても、1回 の変位量を示す直接的なデータが得られない場合にこの式が用いられている。なお、式(4) の導出には、1891 年濃尾地震から 1974 年までに日本で発生した内陸地震が用いられてお り、この式をそのまま海域の活断層に適用可能であるかどうかは検討の余地があるものの、 本評価対象海域に分布する活断層の特性は、内陸及び日本海南西部に分布する活断層と類 似すると考えられるため、日本海南西部の長期評価と同様に、本評価では式(4)を本評価 対象海域の活断層に適用した。

(1) - 5 断層の種類

本評価対象海域における断層の種類については、反射断面で観察できる構造や周辺陸域 での活断層の走向と断層の種類及び震源メカニズムから推定される応力場との関係を考慮 して推定した。断層に沿って幅 10 km 程度以上の背斜や隆起構造を確認することができる 場合には逆断層、確認できない場合には横ずれを主体とする断層であると推定した。近畿地 域や中部地域では、東西圧縮場に近い応力場で活断層が東西走向から北東-南西走向の場 合には右横ずれ、北北西-南南東走向から北西-南東走向の場合には左横ずれ運動を行っ ている。本評価対象海域は、これらの地域に隣接しており、かつ東西圧縮場に近い応力場で あるため、同様な関係があると考えられることから、断層の種類は、走向に応じて解釈した。

また、断層の種類の信頼度については、断層の走向や傾斜、日本島弧全域三次元広域応力 場(Terakawa and Matsu'ura, 2008, 2010、以下「広域応力場」という)(図16)から、Wallace-Bott 仮説(Wallace, 1951; Bott, 1959)に基づいて算出した断層面上のすべり角(付録6)と 比較することで判断した。すなわち、広域応力場から推定されたすべり角が90°±45°以内の 場合には逆断層型、-90°±45°以内の場合には正断層型、0°±45°以内の場合には左横ず れ型、180°±45°以内の場合には右横ずれ型に分類し、先に求めた断層の種類と一致する場 合には、信頼度を○とした。また、地質構造からは逆断層と判断されたが、広域応力場を用 い Wallace-Bott 仮説に基づいて算出される断層面上のすべり角からは横ずれ断層となる断 層が数例あるが、断層の種類を「××側隆起の逆断層(●横ずれ成分を伴う)」として、若 狭海丘列北縁断層を除き信頼度は○とした。若狭海丘列北縁断層については、断層の幾何形 状、特に傾斜角の不確実性が大きいと考えられることから、信頼度は△とした。

(1) - 6 平均変位速度

本評価対象海域の能登半島周辺海域では、高分解能の音波探査断面で、最終氷期侵食面 あるいは堆積面に断層変位量を確認できることがある。断層の両側に起伏のない堆積面か 侵食面に変位が認められ、最終氷期以降の変位量が測定可能と考えられる場合には、その年 代を2.1-1.7万年前(Yokoyama et al., 2018)として平均変位速度(縦ずれ)を推定した。ま た、海岸に沿って逆断層が分布する場合には、小池・町田(2001)に記載された最終間氷期 の旧汀線高度と年代から平均変位速度を推定した。ただし、旧汀線高度から推定した平均変 位速度は上盤の隆起速度を示しており、断層下盤の沈降速度を含んでいないことから、それ 以上とした。年代の決定に用いた海洋酸素同位体ステージ(Marine Isotope Stage、以下「MIS」 という)の年代については最新の値を用いるようにした。

能登半島周辺海域以外の評価対象海域では、日本海南西部の長期評価と同様に、反射断 面上で広範囲に追跡可能な中期更新世の地層の基底を基準面として、その上下変位量、断層 傾斜角及び基準面の堆積年代から平均変位速度(縦ずれ)を求めた。その上で、評価対象海 域には横ずれ断層と逆断層が分布するため、断層の型に応じた評価対象海域を代表する値 として推定した断層すべり角の横ずれ/縦ずれ比を用いて平均変位速度を算出した(図 17)。 詳細は以下のとおりである。

産業技術総合研究所は、反射断面を用いて中新世以降の層序と地質構造をまとめた海洋 地質図を発行している。そのうち、九州の北方沖海域から隠岐海峡までの海底地質図では、 中新世末に形成された宍道褶曲帯の侵食平坦面を覆う地層を軽微な不整合によって、P層、 Q2層及びQ1層に区分している(玉木ほか,1982;岡村,2016,2017)。このうちQ1層基底は 広範囲に追跡可能であり、その年代は鳥取県沖で実施された IODP Exp346 航海の Site U1427

(Expedition 346 Scientists, 2014; Sagawa et al., 2018) との対比から、60-70 万年前と推定さ れたが、この層準を広域的に追跡する際に生じる誤差も考慮し、Q1 層基底の年代を 40-90 万年とした(地震調査研究推進本部地震調査委員会, 2022)。

鳥取沖から福井県沖の宍道褶曲帯の侵食平坦面を覆う地層は、Hm1 層、Hm2 層、Tt1 層 及び Tt2 層に区分されている(山本ほか, 1989, 1993, 2000)。Q1 層基底は Tt2 層の基底より やや上位に位置するが、Tt2 層基底と同様に広く追跡可能であることと、活断層の平均変位 速度を推定する基準層としては年代が新しい方が望ましいと判断し、本評価対象海域でも Q1 層を基準層として、その基底を基準面とした。

上下変位量は反射断面上において、往復走時で 0.01 秒単位(ブーマーを音源とする高分 解能マルチチャンネル音波探査においては 0.001 秒単位)で測定し、測定値は必要に応じて 反射断面の斜補正を行った。日本海における海底下 100 m 前後の更新統の弾性波速度は 1550 m/s より小さいことが多いため(Expedition 346 Scientists, 2014)、地層中の弾性波速度は水中 音速と同じ 1500 m/s を仮定して往復走時から距離に変換した。断層が幅 5 km 以下の背斜や 地溝を伴う場合には、背斜及び地溝内での上下変位量を無視し、その両側の基準面の深度差 を上下変位量とした。一連の断層上で基準面の変位量が複数測定できる場合には、それらの 値の最大値を断層の上下変位量とした。Q1 層基底が分布しない沿岸付近や隆起域では、走 向や構造的特徴が似た隣接する断層の平均変位速度を用いた。上下変位量の求め方の詳細 については、付録 3 に記載した。

23

平均変位速度(縦ずれ)から真の平均変位速度を求めるためには断層すべり角の横ずれ /縦ずれ比が必要となるが、本評価では防災科学技術研究所が運用する F-net のモーメント テンソルカタログ(福山ほか,1998)を用いて、評価対象海域で発生した地震の断層すべり 角から算出される横ずれ/縦ずれ比の頻度分布(図 18-1 及び図 18-2)に基づいて推定 することとした。

本評価対象海域における断層の種類は、(1) -5 断層の種類に基づき横ずれ断層型、 逆断層型(横ずれ成分を含む)、又は逆断層型に分類されている。そこでまず、評価対象海 域で発生した地震のF-netモーメントテンソルカタログから、Frohlich (2001)の分類基準に 基づき、横ずれ断層型、逆断層型、混合型(縦ずれが主)に分類される地震を抽出した(図 18-1)。そして、それぞれの型に分類された地震の断層すべり角から算出される横ずれ/ 縦ずれ比の頻度分布において 20-80%の範囲に収まる横ずれ/縦ずれ比に対応する値を幅 と仮定して、各断層の平均変位速度の幅を推定した(表6)。算出された横ずれ/縦ずれ比 の中央値ならびに 20-80%に対応する値は、逆断層型に対しては 0.16-0.70(中央値 0.36)、 横ずれ断層型に対しては 2.90-11.43 (中央値 5.15)、混合型(縦ずれが主)に対しては 0.43 -0.97 (中央値 0.75)である(図 18-2)。横ずれ成分を伴う逆断層型の海域活断層に対し ては、混合型(縦ずれが主)の横ずれ/縦ずれ比を用いた。なお、日本海南西部の長期評価 では、評価対象海域で発生した地震のF-netモーメントテンソルカタログから求めた頻度分 布のうち、累積個数の 20-80%に対応する値 2.1-11.4 を、断層すべり角の横ずれ/縦ずれ 比の幅と仮定し、各断層の平均変位速度の幅を推定しているが、本評価対象海域において、 横ずれ断層型に対して算出された横ずれ/縦ずれ比の幅と整合的である。

このようにして求めた 40-90 万年間の平均変位速度は、陸上の活断層評価で一般に用い られている活動履歴や平均変位速度より長い期間で複数の断層情報を含んだ、評価対象海 域の断層活動の代表的な値を見ているものと考えられる。本評価対象海域では、一部の断層 を除いて、これ以上短い期間の平均変位速度を推定することはできない。なお、上記の方法 を用いて、主要活断層帯として評価されている菊川断層帯の海域部(北部区間)の上下変位 量から平均変位速度を求めた場合、0.15-1.7 m/千年となる。同断層帯の長期評価では、海 域部の平均変位速度は不明となっているが、隣接する陸域(中部区間)の平均変位速度は 0.7 -1.0 m/千年と推定されており(地震調査研究推進本部地震調査委員会, 2016b)、同様の評価 手法に基づいた推定値と整合することが確認されている(地震調査研究推進本部地震調査 委員会, 2022)。

(2)将来の活動の可能性の評価手法

(2) -1 個別の海域活断層が活動する場合の地震発生確率

海域活断層の単位区間で地震が発生する確率を計算するためには平均活動間隔 R (年) が 必要となるが、日本海中南部における評価対象の海域活断層(帯)については、2024 年1 月1日に発生した M7.6 の地震で活動した能登半島北岸断層帯を除き、過去の活動履歴が不 明なため、3.(1) - 6「平均変位速度」により求めた評価単位区間ごとの平均変位速度 S (m/千年)と、1回の活動に伴う断層の変位量D (m)から

$$R = D/S \tag{5}$$

により求めた。

個々の海域活断層で今後30年間に地震が発生する確率は、地震調査研究推進本部地震 調査委員会(2001)に従い、平均活動間隔ならびに最新活動時期が判明している能登半島 北岸断層帯とそれ以外の海域活断層とで異なる方法を適用して算出した。

能登半島北岸断層帯に対しては、BPT (Brownian Passage Time)分布を適用した。この時、活断層で発生する固有規模の地震(固有地震)の活動間隔のばらつきのパラメータα =0.24、算定基準日は2025年1月1日とした。

その他の最新活動時期が不明な海域活断層に対しては、平均活動間隔をもとにポアソン 過程に基づく式(6)を用いた。

 $P(t) = 1 - \exp(-t/R)$ (6)

ここで、P(t)は評価単位区間において、今後t年間に評価単位区間が少なくとも1回活動 する確率を表す。

(2) - 2 区域内のいずれかの海域活断層を震源とする地震の発生確率

各区域で将来一定規模以上の地震が発生する確率の計算法は、「活断層の長期評価手法 (暫定版)」報告書(地震研究推進本部地震調査委員会長期評価部会,2010)に基づく。あ る区域においてt年間に少なくとも1回、マグニチュードyを超える地震が発生する確率 P(Y>y;t)は、

 $P(Y > y;t) = 1 - \prod[1 - P_k(Y > y;t)]$ (7) で与えられる。ここで $P_k(Y > y;t)$ はある区域内のk番目の評価単位区間においてt年間に マグニチュードがyを超える地震が少なくとも1回発生する確率である。なお、平均活動 間隔Rは前述のとおり推定幅があり、それに基づいて算出される確率値 P_k やPもこれに 応じた幅を持つことになる。本評価では、最新活動時期が不明な海域活断層に対してはポ アソン過程に基づく式(6)を、最新活動時期が明らかな海域活断層(能登半島北岸断層 帯)に対しては、BPT分布に基づき全ての評価単位区間について P_k の確率値を算出したう えで、式(7)からPを求めた。この際、平均活動間隔の推定幅を区間とする一様な確率 密度分布を仮定して、モンテカルロ法によって10万通り繰り返すことで確率値の頻度分 布を求め、Pの代表値としてその分布の中央値ならびに95%信頼区間を算出した(付録7 -2)。なお、Pの計算には、海底下浅部で痕跡を認めにくい地震の発生確率も含めること とし、その平均活動間隔については付録7-1に基づいて推定した。

4. 日本海中南部の海域活断層の特性

本評価では、断層分布の特徴や広域応力場ならびに近隣の活断層の地域評価との整合性 を考慮して、評価区域を図1に示すように西部、東部の2つの区域に分け、3.(1)「海域 活断層の特性の評価手法」に従い、各区域に属する個々の評価対象の海域活断層(帯)の評 価を行った。評価した活断層の特性については表1-1、表1-2にまとめた。ここでは、 まず評価対象海域全体及び各区域の特徴をまとめ、それぞれの区域に属する活断層の特性 と、その活断層が活動した場合に想定される地震及びその規模について述べる。また、評価 した活断層の特性に基づく矩形断層モデルを図19に示す。 個別の評価対象の海域活断層(帯)の地震発生確率は、能登半島北岸断層帯を除いて、個 別の断層特性に関する情報のみでは求めることができないため、不明である。そのため、本 評価では3.(1)-6「平均変位速度」で示したように、評価対象海域で発生した地震の 発震機構解から推定した断層すべり角から算出される横ずれ/縦ずれ比を用い、平均変位 速度を推定している(表6)。この平均変位速度は、個別の断層に特化した評価になってい ないことから、評価単位区間によっては本来の値から外れた平均変位速度になる可能性も あり、これに基づく個別の海域活断層の平均活動間隔(表6)や地震発生確率(表7)も本 来の値から外れた結果になる可能性があることに留意する必要がある。能登半島北岸断層 帯については、活動履歴に基づいた地震発生確率を推定した。

評価対象海域における海域活断層の分布の特徴について、以下のとおり示す。本評価では、 先に述べた3.(1)「海域活断層の特性の評価手法」によって、本評価対象海域における海 域活断層の位置、形状を評価し、1.(1)「評価方針」に基づいて長さ20km 程度以上の活 断層を評価対象の海域活断層(帯)として認定した(図1)。

断層の型として、横ずれ断層と逆断層及び両者の成分を持つものが混在するが、全ての横 ずれを主体とする海域活断層は西部に分布し、東部は全て逆断層である。横ずれ断層は北北 西-南南東走向であり、高角の断層面を持ち、断層に沿って明瞭な背斜構造を伴わない。一 方で、逆断層は非対称な断面を持つ背斜構造を伴う。

横ずれ断層の走向は宍道褶曲帯の走向ともほぼ直交することから、逆断層の再活動とは 考えにくく、ほぼ垂直の断層面を持つと判断した。逆断層については、文部科学省研究開発 局・東京大学地震研究所(2021)の断層傾斜角を考慮し、断層に伴う背斜構造の形状なども 参考に判断した。

評価した断層の位置や特性については表1-1、表1-2にまとめたが、以下では各区域 の活断層の特徴について簡単に述べる。また、各断層の活動度は、表8に基づいて平均変位 速度の仮定値に相当するものを、参考として記載した。

(1) 西部区域

西部区域には、北北西-南南東走向の左横ずれ断層とおおよそ東北東-西南西~北東-南西走向の逆断層(横ずれ成分を伴うことがある)が分布する。本区域に位置する左横ずれ 断層は、沖ノ礁北方断層、小浜沖断層、浦島礁北方北断層、浦島礁北東断層の4断層である。 右横ずれ成分を伴う逆断層は、経ヶ岬沖断層、若狭海丘列北縁断層、越前岬西方沖北断層、 ゲンタツ瀬・大グリ南東縁断層帯の3断層及び1断層帯、逆断層は加佐ノ岬沖断層である。 以下に本区域に分布する海域活断層の特性について記述する。

沖ノ礁北方(おきのくりほっぽう)断層(図5-1(a))

沖ノ礁北方断層は、長さ約 25 km のほぼ北北西-南南東走向の左横ずれ断層である。断 層面はほぼ垂直であり、断層両側に反射構造や傾斜の変化はほとんど認められない。2本の 断層が並走し、断層間が沈降する部分がある。基準面の最大上下変位量は約 0.02 秒(往復 走時)である。南端のすぐ南に位置するほぼ南北走向の断層は、背斜構造を伴う逆断層であ ることから、経ヶ岬沖断層を構成する断層であると判断した。平均変位速度は 0.05-0.4 m/ 千年程度(活動度 B-C 級)と推定される。この断層が活動した場合に想定される地震規模は M7.2 程度で、その際には左横ずれを主体とした 3 m 程度の変位が生じる可能性がある。

② 経ヶ岬沖(きょうがみさきおき)断層(図5-1(b))

経ヶ岬沖断層は、複数の断層から構成されるが、全体として長さ約 36 km の北東-南西 走向で、右横ずれ成分を伴う北西側隆起の逆断層と評価した。北東部は北西傾斜の逆断層上 盤に非対称な断面を持つ背斜構造を伴うが、南西部は北東-南西から南北などの走向が異 なる複数の断層からなる複雑な構造を持つ。現在利用できる反射断面だけからは正確な構 造を解明することは困難であるが、全体として北東-南西に延びる隆起帯を形成している ことから複数の断層と背斜構造全体を単一の断層と評価した。本断層の東部を横断する大 深度マルチチャンネル反射法地震探査が実施されており、北西傾斜の断層が解釈されてい る(図 20-1 及び図 20-2:文部科学省研究開発局・東京大学地震研究所,2021)。本断層 では基準面の変位量を測定できなかったため、東側に位置し、ほぼ同じ走向と構造を持つ越 前岬西方沖北断層の平均変位速度である 0.3-0.8 m/千年程度(活動度 B 級)を仮定した。 この断層が活動した場合に想定される地震規模は M7.4 程度で、その際には逆断層成分を主 体として右横ずれ成分を伴う4m程度の変位が生じる可能性がある。

③ 小浜沖(おばまおき)断層(図5-1(c))

小浜沖断層は、小浜湾口から北北西方向に延びる北北西-南南東走向の左横ずれ断層で ある。確認できる長さは約33kmであるが、南端は明瞭でないため、それ以上と評価した。 日本海における大規模地震に関する調査検討会(2014)における F53 断層の一部に相当す る。東側が低下するほぼ垂直の断層であり、基準面の変位量は約0.06 秒である。平均変位 速度は0.2-1.3m/千年程度(活動度A-B級)と推定される。この断層が活動した場合に想 定される地震規模はM7.4程度で、その際には左横ずれを主体として3m程度の変位が生じ る可能性がある。

④ 浦島礁北方北(うらしまぐりほっぽうきた)断層(図5-1(d))

浦島礁北方北断層は、浦島礁の北方に位置する北北西-南南東走向の長さ約 40 km の左 横ずれ断層である。ほぼ垂直の断層面が認められ、その両側には背斜構造を伴わない。測線 の間隔が広いため正確な断層線を決めることは困難であるが、反射断面で確認できる明瞭 な断層が連続すると考えて断層線を決めた。南部では断層の走向が西北西-東南東に変化 するように見えるが、測線数が不十分であるため、単一の断層と評価した。基準面の変位量 は約 0.03 秒である。平均変位速度は 0.08-0.7 m/千年程度(活動度 B-C 級)と推定される。 この断層が活動した場合に想定される地震規模は M7.5 程度で、その際には左横ずれを主体 として 4 m 程度の変位が生じる可能性がある。

⑤ 若狭海丘列北縁(わかさかいきゅうれつほくえん)断層(図5-1(e))

若狭海丘列北縁断層は、若狭海丘列の北側斜面の基底に形成された東北東-西南西走向 で長さ約 21 km の南側隆起の逆断層である。若狭海丘列は後期中新世に成長した背斜構造 に沿っており、その北側には比高 700 m 以上の急斜面が約 85 km にわたって連続し、その 北側には隠岐トラフが広がる。斜面には大きく崩壊しているように見える部分も多い。この ような地形及び地質学的特徴から斜面のほぼ全体が活断層と判断されたこともあるが(例 えば、日本海における大規模地震に関する調査検討会(2014)における F49 断層)、本評価 では斜面基底付近の隠岐トラフ底を覆う堆積層の構造を詳しく検討し、最近まで変形が続 いている可能性を否定できない約 21 km を活断層と判断した。基準面は鳥取沖の急斜面か ら追跡しているので信頼性はやや低いが、上下変位量は約 0.15 秒と推定した。平均変位速 度は 0.3-0.7 m/千年程度(活動度 B 級)と推定される。この断層が活動した場合に想定さ れる地震規模は M7.0 程度で、その際には逆断層成分を主体とした 2 m 程度の変位が生じる 可能性がある。

⑥ 越前岬西方沖北(えちぜんみさきせいほうおききた)断層(図5-1(f))

越前岬西方沖北断層は、東北東-西南西走向の右横ずれ成分を伴う北西側隆起の逆断層 で、全体の長さは約38kmに達する。同じ走向と変位様式を持つ複数の断層線からなるが、 断層間の距離が小さいことから、全体として単一の断層と判断した。断層中央部では断層線 北側に沿って明瞭な背斜構造を持ち、基準面の上下変位量は最大で約0.25秒である。平均 変位速度は0.3-0.8 m/千年程度(活動度 B 級)と推定される。この断層が活動した場合に 想定される地震規模はM7.5程度で、その際には逆断層成分を主体として右横ずれ成分を伴 う4m程度の変位が生じる可能性がある。

⑦ 浦島礁北東(うらしまぐりほくとう)断層(図5-1(g))

浦島礁北東断層は、浦島礁とゲンタツ瀬の中間付近から北北西方向に約23km 連続する 左横ずれ断層である。海底付近の断層面はほぼ垂直で、部分的に2列の断層が形成され、そ の間に地溝状の沈降域が認められることがある。背斜構造は伴わない。基準面の変位量は約 0.02秒である。平均変位速度は0.05-0.4m/千年程度(活動度B-C級)と推定される。こ の断層が活動した場合に想定される地震規模はM7.1程度で、その際には左横ずれを主体と して2m程度の変位が生じる可能性がある。

⑧ ゲンタツ瀬・大グリ南東縁(げんたつせ・おおぐりなんとうえん)断層帯(図5-1h)

ゲンタツ瀬・大グリ南東縁断層帯は、全体として長さ約52kmに達する断層帯であり、南 西側のゲンタツ瀬区間と北東側の大グリ区間からなる。日本海における大規模地震に関す る調査検討会(2014)におけるF51断層に相当する。2つの断層は狭い間隔で重複するよう に配置することから、連動する可能性があると判断した。いずれの断層も基準面が断層北西 側の隆起域で欠如しており、変位量を直接測定できなかったため、北東側のほぼ同じ走向と 構造を持つ加佐ノ岬沖断層と同程度(0.2-0.6 m/千年程度(活動度 B 級))と仮定した。ま た、本断層帯周辺で発生する地震のメカニズム解を参考に、右横ずれ成分を伴う北西側隆起 の逆断層と判断した。なお、本断層帯を横断する大規模マルチチャンネル反射法地震探査が 実施され、北傾斜の逆断層が解釈されている(図 21:文部科学省研究開発局・東京大学地 震研究所, 2021)。 ゲンタツ瀬区間は、越前岬の北方沖約 30 km に位置し、北東-南西走向で長さ約 20 km の 右横ずれ成分を伴う北西側隆起の逆断層である。断層の北西側に沿って非対称な背斜構造 が形成されている。その頂部には中新世の地層が露出する(山本ほか,2000)。北西側斜面を 覆う鮮新世及び更新世の堆積物は下位ほど傾斜が増し、背斜構造が更新世にも成長してい ることを示しているが、更新世の傾動速度は低下している可能性がある。基準層は頂部には 分布しない。南東側には基準面が分布し、一部で撓曲しているように見える。主に宍道褶曲 帯形成期に形成され、最近も活動していると推定される。基準層の変位量を直接測定するこ とはできない。

大グリ区間は、ゲンタツ瀬区間の北東側に、一部重複するように形成された北東-南西走 向で長さ約 35 km の右横ずれ成分を伴う北西側隆起の逆断層である。断層の北西側に沿っ て非対称な背斜構造が成長している。背斜軸付近には中新世の堆積層が露出している(山本 ほか,2000)。北西側斜面を覆う鮮新世及び更新世の堆積物は下位ほど傾斜が増し、背斜構造 が更新世にも成長していることを示しているが、更新世の傾動速度は低下している可能性 がある。基準面は頂部で欠如するため変位量は測定できない。主に宍道褶曲帯形成期に形成 され、最近も活動していると推定される。

この断層帯のゲンタツ瀬区間及び大グリ区間が活動した場合に想定される地震規模はそ れぞれ M7.0 程度及び M7.4 程度で、その際には逆断層成分を主体として右横ずれ成分を伴 うそれぞれ2m 程度、4m 程度の変位が生じる可能性がある。また、これらの評価単位区 間が連動する可能性を否定できない。その場合に想定される地震規模は M7.7 程度で、逆断 層成分を主体として右横ずれ成分を伴う変位が生じる可能性がある。

⑨ 加佐ノ岬沖(かさのみさきおき)断層(図5-1(i))

加佐ノ岬沖断層は、ゲンタツ瀬・大グリ南東縁断層帯の北東側に位置する北東-南西走向 で長さ約 25 km の南東側隆起の撓曲帯である。日本海における大規模地震に関する調査検 討会(2014)における F50 断層に相当する。更新世の地層中に傾斜の増加が認められ、伏在 する南東傾斜の逆断層の活動によって形成されたと判断した。基準面の変位量は約 0.24 秒 に達する。平均変位速度は 0.2-0.6 m/千年程度(活動度 B 級)と推定される。この断層が 活動した場合に想定される地震規模は M7.2 程度で、その際には逆断層成分を主体として 3 m 程度の変位が生じる可能性がある。

(2)東部区域

東部区域に属する海域活断層は、羽咋沖東断層、羽咋沖西断層、内灘沖断層、海士岬沖東 断層、門前断層帯、沖ノ瀬東方断層、能登半島北岸断層帯、輪島はるか沖断層、能登半島北 方沖断層、舳倉島近海断層帯、七尾湾東方断層帯、飯田海脚南縁断層、富山トラフ西縁断層 ならびに富山トラフ横断断層の10断層及び4断層帯であり、右横ずれ成分を伴う逆断層に 分類される門前断層帯門前沖区間を除き、いずれも逆断層に分類される。以下に本区域に分 布する海域活断層の特性について記述する。

① 羽咋沖東(はくいおきひがし)断層(図5-2(j)右)

羽咋沖東断層は、羽咋市の西方沖に形成されたほぼ南北走向で長さ約 30 km の西側隆起 の逆断層である。日本海における大規模地震に関する調査検討会(2014)における F46 断層 に相当する。断層の西側に沿って非対称な背斜構造が形成され、更新世の地層中に背斜の成 長が認められる。南端は陸上の宝達山から延びる東西方向の後期中新世に形成された隆起 帯付近に達するが、横断していない(岡村ほか,2007)。基準面の上下変位量は約 0.11 秒で ある。平均変位速度は 0.1-0.3 m/千年程度(活動度 B 級)と推定される。この断層が活動 した場合に想定される地震規模は M7.3 程度で、その際には逆断層成分を主体として 3 m 程 度の変位が生じる可能性がある。

羽咋沖西(はくいおきにし)断層(図5-2(j)左)

羽咋沖西断層は、羽咋沖東断層の西方約 10-15 km に位置する北北東-南南西走向の長 さ約 21 km の西側隆起の逆断層である。断層の西側に沿って非対称な背斜構造が形成され、 更新世の地層中に背斜の成長が認められる。基準面の上下変位量は約 0.18 秒である。平均 変位速度は 0.2-0.5 m/千年程度(活動度 B 級)と推定される。この断層が活動した場合に 想定される地震規模は M7.0 程度で、その際には逆断層成分を主体として 2 m 程度の変位が 生じる可能性がある。

① 内灘沖(うちなだおき)断層(図5-2(k))

内灘沖断層は、加佐ノ岬沖断層の約 20 km 北方に形成された、長さ約 29 km で北東-南 西走向の南東側隆起の撓曲帯である。日本海における大規模地震に関する調査検討会 (2014) における F47 断層の一部に相当する。更新世の地層中に傾斜の増加が認められ、南東傾斜 の逆断層が伏在すると判断した。中央付近で不連続になっているように見えるが、東側隆起 の構造が不連続部分を繋いでいる可能性が高いことから、単一の断層であると判断した。基 準面の上下変位量は約 0.3 秒である。平均変位速度は 0.3-0.8 m/千年程度(活動度 B 級)と 推定される。この断層が活動した場合に想定される地震規模は M7.3 程度で、その際には逆 断層成分を主体として 3 m 程度の変位が生じる可能性がある。

③ 海士岬沖東(あまみさきおきひがし)断層(図5-2(1)右)

海士岬沖東断層は、能登半島西岸に位置する海士岬の西方沖に形成された北東-南西走向の長さ約 21 km の南東側隆起の逆断層であるが、北東端位置については信頼性がやや低い。最終氷期の侵食面に約 0.018 秒の上下変位が認められ、それを覆う完新世の地層にも累積的な断層変位が観察できる。平成 19 年(2007 年)能登半島地震(M6.9)後に得られた高分解能反射探査断面(井上・岡村,2010)では海底に変位は認められないが、2024 年 1 月 1日の石川県能登地方の地震(M7.6)では、本断層の北部がわずかに変位した可能性がある。平均変位速度は 0.8-1.1 m/千年程度(活動度 A-B 級)と推定される。この断層が活動した場合に想定される地震規模は M7.0 程度で、その際には逆断層成分を主体として 2 m 程度の変位が生じる可能性がある。

(4) 門前(もんぜん)断層帯(図5-2(1)中央)

門前断層帯は、能登半島北西部に位置する石川県輪島市門前町の西方沖に形成されている東北東-西南西走向の長さ約 38 km の南東側隆起の逆断層であり、北東側の門前沖区間と南西側の海士岬沖区間に区分した。

門前沖区間は、門前の西方沖に形成された東北東-西南西走向の長さ約 23 km の右横ず れ成分を伴う南東側隆起の逆断層であるが、東端は確認できていない。平成 19 年 (2007 年) 能登半島地震 (M6.9) では本区間の東部が震源断層となったと考えられており、海底にも最 大で 2 m の変位が報告されている (吉田ほか,2007)。同地震では地震活動が本断層の東方延 長上の陸域まで広がっており、断層が東に延びている可能性がある。また、2024 年 1 月 1 日に石川県能登地方で発生した M7.6 の地震でも、門前沖区間の東端部で 1 m 前後の変位が 生じた (岡村ほか,2024)。海域では断層の南東側に背斜構造を伴う。最終氷期の侵食面に約 0.022 秒の上下変位が認められ、それを覆う完新世の地層にも累積的な断層変位が観察でき る (井上ほか,2007)。完新世の地層中に間欠的な変位量の増加が認められ、2 – 3 千年程度 の活動間隔が推定されている (池原ほか,2007)。平均変位速度は 1.0 – 1.6 m/千年程度(活動 度 A 級) と推定される。

海士岬沖区間は、門前沖区間の南西側に形成された北東-南西走向の長さ約 18 km の南 東側隆起の逆断層であり、南東側に沿って非対称な背斜を伴う。基準面に約 0.075 秒の上下 変位が認められる。平均変位速度は 0.07-0.2 m/千年程度(活動度 B-C 級)と推定される。

門前断層帯の門前沖区間及び海士岬沖区間が活動した場合に想定される地震規模はそれ ぞれ M7.1 程度及び M6.9 程度で、その際には逆断層成分を主体としていずれも2m 程度の 変位が生じる可能性がある。また、これらの評価単位区間が連動する可能性を否定できない。 その場合に想定される地震規模は M7.5 程度で、逆断層成分を主体とした変位が生じる可能 性がある。

(1) 沖ノ瀬東方(おきのせとうほう)断層(図5-2(1)左)

沖ノ瀬東方断層は、門前断層帯の北西側に位置する北東-南西走向の長さ約 35 km の南 東側隆起の逆断層である。複数の断層が認められるが、全体として単一の断層として評価し た。断層の南東側に非対称な背斜構造が形成されている。最終氷期の侵食面あるいは堆積面 の上下変位量は約 0.004 秒である。平均変位速度は 0.2-0.3 m/千年程度(活動度 B 級)と推 定される。この断層が活動した場合に想定される地震規模は M7.4 程度で、その際には逆断 層成分を主体として 4 m 程度の変位が生じる可能性がある。

16 能登半島北岸(のとはんとうほくがん)断層帯(図5-2(m))

能登半島北岸沖からその北東沖に断続的に連続する東北東一西南西走向の長さ約 94 km の南東側隆起の逆断層である。日本海における大規模地震に関する調査検討会(2014)にお ける F43 断層に相当する。井上・岡村(2010)に従って、西から猿山沖区間、輪島沖区間、 珠洲沖区間に区分した。2024年1月1日に石川県能登地方で発生した M7.6 の地震では本断 層帯全体が活動したと考えられる。断層の活動性に関する情報として、海域の高分解能音波 探査で得られた反射断面で観察される断層変位、海岸線沿いに分布する海成段丘などがあ る。反射断面では最終氷期の侵食面とそれを覆う完新世堆積物を認定できるが、活動履歴を 認定することは困難である(井上・岡村,2010)。また、低位段丘群(小池・町田,2001;宍 倉ほか,2020)は全ての区間で2-3段(上位からL1、L2、L3面)の平坦面が広く分布し、 離水年代は明らかになっていないが、完新世の約6千年前以降に形成されたと推定されて いる(宍倉ほか,2020)。本評価では、これらの低位段丘群が過去の本断層帯の活動によって 形成されたと判断し、最上位のL1面が完新世の約6千年前に形成され、2024年1月1日の 石川県能登地方の地震(M7.6)を最新活動とし、約6千年間に3回の地震が発生したと仮定 して地震発生確率を推定した。その結果、算定基準日を2025年1月1日とした今後30年 間の地震発生確率は、いずれの評価単位区間においてもほぼ0%となった。数地点の海岸沿 いの標高1-2mの岩礁では、段丘を伴わない小規模な地震性隆起が生じていることを示 す生物遺骸群集が報告されている(Hamada et al., 2016;宍倉ほか,2020)が、隆起の範囲が 不明であることから、評価単位区間全体の活動には相当しないと判断した。なお、現状の低 位段丘群に基づく平均活動間隔の推定において、離水年代などに不確定性を伴うが、平均活 動間隔を1.5千年、3千年と仮定した場合においても算定される今後30年間の地震発生確 率はほぼ0%で変わらない(図22)。

猿山沖区間は、能登半島北西部の海岸に沿って形成された北東-南西走向の長さ約 24 km の南東側隆起の逆断層である。本区間の西部では海岸線から3km 以内で、走向をほぼ南北 から東北東へ変えながら連続し、区間の中間付近で北へ位置を変えて東北東へ延び、輪島の 北方沖で不明瞭になる。反射断面では、猿山岬の沖で最終氷期の侵食面を厚さ 40-50mの 完新世の地層が覆い、南東側隆起の断層によって最終氷期侵食面が最大で約 0.04 秒(約 30 m)の上下変位が観察され、上下変位速度は1.4-1.8m/千年と推定される。ただし、最終氷 期の侵食面が断層の両側で完全に平坦化されておらず、隆起側の侵食面がやや浅かった可 能性を否定できない。海域の完新世の地層も累積的な変形を示すが、変位回数は判読できて いない。2020 年以前には標高約7-4m (L1、L2 面) に2段の完新世段丘が広く形成され、 東部には標高3m前後の段丘(L3面)が分布する(宍倉ほか,2020)。海岸の標高1-2m には約5百-1千年前の旧汀線を示す可能性ある生物遺骸群集が報告されている(宍倉ほ か、2020)。L1 面が約6千年前に形成され、当時の海水準を現在と同じとすると、平均隆起 速度は約 1.2 m/千年となる。 段丘高度から求めた隆起速度は下盤側の沈降量を含まないため 断層の平均変位速度の最小値とし、最終氷期侵食面の変位速度を最大値とすると、平均上下 変位速度は約 1.2-1.8 m/千年と推定され、断層面の傾斜を 45°とし、横ずれ成分も考慮する と、平均変位速度は約1.7-3.0m/千年(活動度A級)となる。2024年1月1日の石川県能 登地方の地震(M7.6)では地震前の反射断面で確認されていた断層が再活動し、海底に3-4m 程度の南東側隆起の変形が生じ(岡村ほか, 2024)、海岸は4m 以上隆起した(立石ほ $(32, 2024; Fukushima et al., 2024)_{\circ}$

輪島沖区間は、能登半島北岸に沿って形成された東北東-西南西走向の長さ約 23 km の 南東側隆起の逆断層である。本区間の西部では海岸線から 10 km 以内に最大で3条の断層 線が認められるが、東部では最も北の断層線だけが連続し、区間東端では走向をやや南寄り に変え、海岸に接近して見えなくなる。多くの反射断面で最終氷期侵食面に変位が認められ るが、それらの侵食面の形成時に断層の両側で平坦化していたことを確認することは難し

32

い。井上・岡村(2010)による反射断面では、南東側隆起の断層によって最終氷期にほぼ平 坦化された侵食面及び堆積面が最大で約0.034秒の変位をしており、約1.2-1.5m/千年の平 均上下変位速度が推定される。侵食面を覆う完新世の地層の分布は限られるため、変位回数 を判読することはできない。2020年以前の海岸では標高約3-6m程度の間に3段の低位 海成段丘が分布することと、海岸には旧汀線を示す数百年前から約千年前の年代を示す生 物遺骸群集が標高1-2mに分布することが報告されていた(宍倉ほか,2020)。最も高い L1面の高度から推定される、平均隆起速度は約1.0m/千年となる。段丘高度から求めた隆 起速度を最小値、最終氷期侵食面の変位速度を最大値とすると、上下変位速度は約1.0-1.5 m/千年と推定され、断層面の傾斜を45°とし、横ずれ成分も考慮すると平均変位速度は1.4 -2.6m/千年程度(活動度A級)となる。2024年1月1日の石川県能登地方の地震(M7.6) では地震前の反射断面で確認されていた断層が再活動し、海底に最大で3m程度の南東側 隆起の変形が生じ(岡村ほか,2024)、海岸が2m以上隆起した(立石ほか,2024;Fukushima et al., 2024)。

珠洲沖区間は、能登半島東部の北岸沖からその北東沖に形成された東北東-西南西走向 の長さ約 47 km の南東側隆起の逆断層である。本区間の西部約 10 km ではほぼ東西方向で 2条の断層が認められるが、その東で走向を北東に変え、半島の北東端から北東に延びる隆 起地形の北西縁に沿って連続する。途中で別の断層線が北側に出現するが、隆起地形は連続 的であることから一つの区間とした。厚い地層中に形成された撓曲帯が連続することが本 区間の構造上の特徴で、撓曲帯の基部を断層位置とした。活断層は撓曲帯基部の地下に伏在 すると推定される。井上・岡村(2010)による反射断面では、撓曲帯を覆う完新世の地層は 分布せず、最終氷期侵食面が露出し、撓曲帯と調和的に隆起している。侵食面が最終氷期に 平坦化されたかどうか確認できないため、最終氷期以降の変位量の推定は困難である。2020 年以前の海岸では地震前には標高約3-6m 程度の3段の低位海成段丘が分布し、海岸に は旧汀線を示す数百年から約2千年前の年代を示す生物遺骸群集が標高1m 以下に分布す ることが報告されていた(完倉ほか、2020)。L1 面高度から隆起速度は約1.0 m/千年と推定 され、断層面の傾斜を 45°とし、横ずれ成分も考慮すると平均変位速度は約 1.4 m/千年以上 (活動度A級)となる。2024年1月1日の石川県能登地方の地震(M7.6)では地震前の反 射断面と比較して海底に2m前後(岡村ほか,2024)の南東側隆起の変形が生じた。2024 年 1月1日の石川県能登地方の地震(M7.6)では海岸が1m 以上隆起した(立石ほか, 2024; Fukushima et al., 2024)

また、後期更新世の MIS 5e の海成段丘も輪島沖区間から珠洲沖区間に分布し、その旧汀 線高度は 52-123 m である。年代を 12.5 万年前とすると、隆起速度は 0.42-0.98 m/千年と なり、低位段丘から推定される隆起速度より小さい。

これら3区間の断層長から松田ほか(1980)の式(4)で推定される地震時の変位量は、 猿山沖区間で2m程度、輪島沖区間で2m程度、珠洲沖区間で5m程度となる。これらの値 と上記の平均変位速度を用いて推定される地震発生間隔は、猿山沖区間で 0.8-1.4 千年、 輪島沖区間で 0.9-1.6 千年、珠洲沖区間で 3.3 千年以下となる。猿山沖区間と輪島沖区間 で算出された地震発生間隔は低位段丘の形成間隔よりも短い。上記の平均変位速度には小 規模な隆起も含まれていることから、区間の活動による隆起速度を過大に見積もっている

33

可能性がある。また 2024 年 1 月 1 日の石川県能登地方の地震(M7.6)以前にも大きな隆起 を伴う連動型地震が発生していた可能性も考えられる。3 段の低位段丘の高度差は 1 - 4 m と幅があることから、連動型地震と区間毎の地震が発生していた可能性を示している。一方 で、珠洲沖区間で算出された地震発生間隔は低位段丘の形成間隔より長いことから、2 区間 に区分できる可能性がある。

① 輪島はるか沖(わじまはるかおき)断層(図5-2(n))

輪島はるか沖断層は、石川県輪島市の約 10 km 北方沖に位置する北東-南西走向の長さ 約 24 km の南東側隆起の逆断層である。断層の南東側に非対称な背斜構造が形成されてい る。断層の分布域には完新世の地層はほとんど分布せず、侵食面が広がる。断層の活動時期 は不明であるが、侵食面とその直下の地層に断層活動を示す可能性のある変形が認められ ることから活断層であると判断した。断層における平均変位速度についても不明であるが、 能登半島北岸断層帯より侵食面の変位量がかなり小さく不明瞭であることから、本断層の 西方に位置する沖ノ瀬東方断層の平均変位速度(0.2-0.3 m/千年程度(活動度 B 級))と同 じと推定した。この断層が活動した場合に想定される地震規模は M7.1 程度で、その際には 逆断層成分を主体として 2 m 程度の変位が生じる可能性がある。

18 能登半島北方沖(のとはんとうほっぽうおき)断層(図5-2(o))

能登半島北方沖断層は、能登半島北岸断層帯珠洲沖区間の北方約5-10kmに同区間とほ ぼ平行に北東-南西走向に約31km 連続する南東側隆起の逆断層である。断層の南東側に 非対称な背斜構造が形成されているが、海底には変形がほとんど確認できない。2023年5 月5日に能登半島珠洲地方で発生したM6.5の地震に関係している可能性がある。平均変位 速度についても不明であるが、能登半島北岸断層帯よりも侵食面の変位量がかなり小さく 不明瞭であることから、本断層の西方に位置する輪島はるか沖断層の平均変位速度と同じ

(0.2-0.3 m/千年程度(活動度 B 級))と推定した。この断層が活動した場合に想定される 地震規模は M7.3 程度で、その際には逆断層成分を主体として 3 m 程度の変位が生じる可能 性がある。

(19) 舳倉島近海(へぐらじまきんかい)断層帯(図5-2(p))

舳倉島近海断層帯は、舳倉島南方沖から北東へ連続する北東-南西走向で長さ約64kmの 北西側隆起の逆断層である。断層北西側の地質構造の変化から、南西区間と北東区間に区分 した。日本海における大規模地震に関する調査検討会(2014)におけるF44断層にほぼ相当 する。南西区間は、舳倉島南方沖に位置する北東-南西走向の長さ約41kmの北西側隆起 の逆断層である。断層の北西側に沿って非対称な背斜構造を伴い、舳倉島はその上に位置す る。断層の過去の活動時期を直接示すデータはないが、断層が海底にほぼ露出するように見 えることから、活断層と判断した。舳倉島は後期更新世の段丘と推定される台地状の平坦な 高まりからなり、その中心付近に設置された三角点の標高は12.5mである。これを MIS 5e

(12.5 万年前と仮定)の旧汀線高度として、当時の海面を現在と同じであると仮定すると、 平均隆起速度は 0.1 m/千年程度となる。この値から算出される平均変位速度(0.1-0.2 m/千 年程度(活動度 B 級))を本区間における平均変位速度とした。

北東区間は、本断層帯南西区間の北東延長に位置する北東-南西走向の長さ約 23 km の 北西側隆起の逆断層である。断層の北西側の堆積層が薄く、隆起量も小さいので、断層北西 側の背斜の規模も不明瞭である。断層に沿って海底谷が形成されているため、断層の活動時 期や平均変位速度は不明である。本評価では平均変位速度は南西区間の値(0.1-0.2 m/千年 程度(活動度 B 級))を仮定した。

舳倉島近海断層帯の南西区間及び北東区間が活動した場合に想定される地震規模はそれ ぞれ M7.5 程度及び M7.1 程度で、その際には逆断層成分を主体としてそれぞれ4m程度、 2m程度の変位が生じる可能性がある。また、これらの評価単位区間が連動する可能性を否 定できない。その場合に想定される地震規模はM7.8 程度で、逆断層成分を主体とした変位 が生じる可能性がある。

20 七尾湾東方(ななおわんとうほう)断層帯(図5-2(q))

七尾湾東方断層帯は、能登半島南東側の富山県氷見市北部から石川県鳳珠郡能登町東部 の南東沖に形成された、南北走向と北東-南西走向の断層からなる長さ約 43 km の西側隆 起の逆断層帯である。日本海における大規模地震に関する調査検討会(2014)における F45 断層に相当する。水深約 1000 m に達する富山トラフ南部の西縁の急斜面に沿って分布する。 断層の走向が変化する七尾湾東方沖で南側の大泊鼻(おおどまりばな)沖区間と北東側の城 ヶ崎沖区間に区分した。いずれも急斜面の基部に位置し、断層周辺の地質構造が分かりにく い。

大泊鼻沖区間は、富山県と石川県の県境付近に位置する大泊鼻の東方沖に形成されたほ ぼ南北走向の長さ約 25 km の西側隆起の逆断層である。断層西側は比高数百 m の急斜面と なっており、構造が分かりにくい。斜面基部で富山トラフ底を覆うほぼ水平な堆積物が断層 斜面に向かって隆起するように傾斜するが、下位層ほど急傾斜することから活断層と判断 した。海岸に分布する後期更新世の MIS 5c の海成段丘の旧汀線高度は 22 m であり(小池・ 町田, 2001)、形成時の海面高度を-5 m として(Creveling et al., 2017)、累積上下変位量は 27 m と推定される。MIS 5c の年代を 10 万年前として、平均変位速度は 0.4-0.5 m/千年程 度(活動度 B 級)以上と判断した。

城ヶ崎沖区間は、七尾湾湾口沖の急斜面基部から、北東へ約 21 km 連続する北西側隆起 の逆断層である。大泊鼻沖区間より斜面全体は緩傾斜であり、急斜面は斜面下部に限られる が、隆起側の構造は不明瞭である。南東側の富山トラフ底を覆う堆積物は、断層の近傍でト ラフ側に傾斜するが、下位層ほど傾斜が大きくなることから活断層と判断した。海岸に分布 する後期更新世の MIS 5e の海成段丘の旧汀線高度(41 m:小池・町田,2001)から、MIS 5e の年代を 12.5 万年前として、平均変位速度は 0.5-0.6 m/千年程度(活動度 B 級)以上と判 断した。

七尾湾東方断層帯の大泊鼻沖区間及び城ヶ崎沖区間が活動した場合に想定される地震規 模はそれぞれ M7.2 程度及び M7.0 程度で、その際には逆断層成分を主体としてそれぞれ3 m程度、2m程度の変位が生じる可能性がある。また、これらの評価単位区間が連動する可 能性を否定できない。その場合に想定される地震規模は M7.6 程度で、逆断層成分を主体と

35
した変位が生じる可能性がある。

① 飯田海脚南縁(いいだかいきゃくなんえん)断層(図5-2(r))

飯田海脚南縁断層は、能登半島東部から東方に張り出す飯田海脚の南側斜面基部に形成 された、ほぼ東西走向の長さ約 31 km の北側隆起の逆断層である。飯田海脚の南斜面を覆 う南傾斜の地層は斜面下部で富山トラフの表層を覆う地層に覆われるが、その地層の傾斜 が上位ほど緩やかになることから活断層と判断した。ただし、傾斜の変化が明瞭に認められ る領域は限られることから、平均変位速度は七尾湾東方断層帯よりかなり小さいと考え、 0.1 m/千年程度と判断した。この断層が活動した場合に想定される地震規模はM7.3程度で、 その際には逆断層成分を主体として 3 m 程度の変位が生じる可能性がある。

② 富山トラフ西縁(とやまとらふせいえん)断層(図5-2(s))

富山トラフ西縁断層は、能登半島北岸断層帯の北東側に形成された、北北東-南南西走向 の長さ約 61 km の西側隆起の逆断層である。日本海における大規模地震に関する調査検討 会 (2014) における F42 断層にほぼ相当する。 富山トラフとその西縁の急斜面の境界付近に 位置する。断層南東側のトラフを覆う堆積物はほぼ水平であるが、断層の北西側斜面に分布 する地層は南東に急傾斜しつつ大きく隆起している。北部では能登半島側の斜面から離れ て富山トラフ内に連続するが、富山トラフの堆積物が海底下で背斜構造を形成し、その隆起 量が下位ほど大きくなることから、活断層が連続していると判断した。2024 年1月1日の 石川県能登地方の地震 (M7.6) では本断層の中部まで地震活動が広がり、北西傾斜の震源分 布を示したことから、本断層も一部が活動した可能性がある。南東傾斜の能登半島北岸断層 帯珠洲沖区間の南東側に位置することから、本断層の南部では地下深部では2つの断層面 が交差するような関係になるが、実際に珠洲沖区間との境界付近では地下深部で互いに近 づくような震源分布が観測されている。地震活動の分布が本断層全体には広がっていない ことや、津波観測データの解析でも本断層の波源としての寄与は小さいとされていること から(Fujii and Satake, 2024)、2024 年1月1日の石川県能登地方の地震(M7.6)による断層 変位は限定的であったと判断した。基準面が分布しないことから、平均変位速度に関する情 報は得られていないが、能登半島北岸断層帯輪島沖区間における最終氷期侵食面の上下変 位量に基づく平均変位速度とほぼ同じ(1.7-2.6m/千年(活動度A級))であると仮定した。 この断層が活動した場合に想定される地震規模は M7.8 程度で、その際には逆断層成分を主 体として6m程度の変位が生じる可能性がある。

③ 富山トラフ横断(とやまとらふおうだん)断層(図5-2(t))

富山トラフ横断断層は、富山トラフ西縁断層から枝分かれするように東北東に延び、富山 トラフ東縁まで達する長さ約 20 km の北西側隆起の逆断層である。東部で富山トラフ西縁 断層から 10 km 以上離れることと走向も異なることから、独立の活断層と評価した。富山 トラフを覆う堆積物に緩やかな背斜構造として認められ、海底直下の地層中に褶曲の成長 が認められる。断層線は背斜構造の南縁とした。平均変位速度は富山トラフ南部の基礎試錐 「上越海丘」(大川ほか,2016)の灰爪層の基底面(約 2.0 Ma)を本断層まで追跡し、野ほか (2014)の反射法地震探査で得られた地震波速度解析の情報を用いて灰爪層の厚さを求め、 その層準以上の堆積速度を一定と仮定して変形が明瞭な地層の年代を推定し、地層の上下 変位量から平均変位速度を 0.6-0.7 m/千年程度(活動度 B 級)と推定した。この断層が活 動した場合に想定される地震規模は M7.0 程度で、その際には逆断層成分を主体として 2 m 程度の変位が生じる可能性がある。

5. 日本海中南部で発生する地震の将来の活動の可能性

5-1.評価対象の海域活断層(帯)で発生する地震の発生確率

日本海中南部海域の区域(西部・東部)ごとに、区域内の海域活断層のいずれかを震源 として今後30年以内にM7.0以上の地震の発生する確率を3.(2)「将来の活動の可能性 の評価手法」に基づいて評価した。この結果、西部区域の確率値の95%信頼区間(中央 値)は、4-6%(5%)程度、東部区域は12-14%(13%)程度、全域は16-18%

(17%)程度となった(表1-1)(注17)。なお、これらの確率には、既存の活断層の地 域評価等において既に評価されている主要活断層帯の海域部は含めなかった。確率計算の ために使用した個別の海域活断層の地震発生確率や、海底下浅部で痕跡を認めにくい地震 の発生確率の代表値は表7に参考値として記載した。

5-2. 多様な地震発生確率の試算

5-2-1. 評価対象海域の海域活断層のいずれかを震源として M6.8 以上の地震が発生する確率

本評価では、津波や地震動の被害が広範囲に及ぶ可能性を考慮して、評価対象海域におい て断層長さ 20 km 程度以上の海域活断層を主な評価対象とし長期評価を行い、区域内の海 域活断層のいずれかを震源として今後 30 年以内に M7.0 以上の地震が発生する確率を評価 した。一方で、陸域の地域評価では M6.8 以上の地震が発生する確率を評価しているため、 ここでは本評価対象海域内の海域活断層のいずれかを震源として今後 30 年以内に M6.8 以 上の地震が発生する確率を算出した。なお、評価対象海域には、長さ 20 km 未満の海域の短 い活断層が存在しているため試算の対象に含めることとし、松田(1975)による式(1)を 用いると M6.8 未満となる長さ 15 km 未満の短い活断層についても、陸域の地域評価と同様 に最低限考慮すべき地震の規模として M6.8 を設定(注 18)して評価することとした(表 9 -1及び 9 - 2)。試算方法の詳細については付録 8 - 1に記載した。本評価対象海域ごと の M6.8 以上の地震が発生する確率試算値の 95%信頼区間(中央値)は、西部区域で 8 -10%(9%)程度、東部区域で 14-15%(15%)程度、全域で 20%(20%)程度となった。

5-2-2.活断層を特定しない地震の確率

活断層を特定しない地震の確率評価については、地震活動がある程度認められる地域で 有効である。本評価対象海域においては、地震活動が一部の地域に偏っており広い範囲で 低調で、特に G-R 式に基づく地震発生確率の推定に必要な M5.0 以上の地震の数が少な く、これらを用いて推定するパラメータの信頼性が低いと考えられる。このような状況で はあるが、気象庁震源カタログは本評価対象海域においても 100 年以上の地震データを蓄 積できていることから、「中国地域の活断層の長期評価(第一版)」(地震調査研究推進本部地震調査委員会,2016a)等と同様な手法で今後30年以内におけるM7.0以上の地震が発生する確率を試算した。試算方法の詳細は付録8-2「活断層を特定しない地震発生の確率評価の計算の詳細」に記載した。

評価対象海域の西部、東部、全域を対象に、1997年10月の気象庁における地震観測デー タの一元化処理業務の開始以降、2024年12月までに発生したM3.0以上の地震をG-R式 に当てはめ、最尤法によりb値を推定した。ただし、本評価地域の地震活動は、一部を除い て低調であるため、b値の推定においては95%信頼区間を求めた。その結果、b値は西部で 0.6-0.9、東部で0.8-0.9、全域で0.8-0.9となった。(図9)。このb値を1919年1月から 2024年12月までの106年間に評価対象海域において発生した深さ30km以浅のM5.0以上 の地震に適用すると、日本海中南部の各区域と全域でのM7.0以上の106年あたりの地震発 生回数は西部区域で0.3-1.5回程度、東部区域で0.9-1.2回程度、全域で1.4-1.9回程度 (図 23)、平均活動間隔にしてそれぞれ、70-300年程度、90-110年程度、60-70年程度

(因 25)、中均活動前隔にじててれてれて、70、500 中程度、50、110 中程度、60、70 中程度 になる。これらの平均活動間隔をもとにポアソン過程に基づいて今後 30 年以内に M7.0 以 上の地震が発生する確率を計算した。確率の試算値を表 10 に掲載する。ただし、2.(2) -1「地震観測」で述べたとおり、当該海域における b 値の推定は条件が悪く、令和6 年能 登半島地震など特定の地震活動に強く依存する形で推定されており、また区域内での地震

金平島地震など特定の地震活動に強く依存する形で推定されており、また区域内での地震 活動度には大きな偏りがある。さらに、推定される地震発生回数の幅も大きいため、これら の試算値の信頼性は低いと考えた。このような制約はあるが、G-R 式に基づく地震発生確 率は、西部区域で9-30%程度(18%程度)、東部区域で20-30%程度(30%程度)、全域 で30-40%程度(40%程度)となり、活断層による今後30年以内にM7.0以上の地震が発 生する確率に比べやや高い(表10)。なお、本海域全域で発生したM7.0以上の地震は過去 400年間に2回程度発生した可能性があり(図11)、その平均発生間隔はおおよそ200年と 考えられる。

なお、本評価対象海域では令和2年(2020年)12月から石川県能登地方で活発な地震活動が継続しており、参考として令和2年(2020年)12月以降の期間を除いた場合の確率についても算出した。その場合の地震発生確率は、西部区域で11-40%程度(20%程度)、東部区域で6-10%程度(8%程度)、全域で15-30%程度(20%程度)となり東部ならびに全域で顕著な相違が見られる。

6. 今後に向けて

本評価では、主に現時点で利用できる海域の反射法地震探査断面(反射断面)を用いて、 海底下浅部の地質構造に基づいて活断層の認定を行い、日本海中南部を東部、西部の2つの 区域に分け、それぞれの区域について海域活断層の長期評価を行った。ここで主な評価の対 象とした活断層は、海底下浅部の地質構造で確認できた断層長さが20km程度以上のもの である。しかしながら、海域活断層調査は陸域の活断層調査と異なり、トレンチ調査やボー リング調査などのような断層の活動履歴を精度よく把握するための地質学的調査が困難で、 限定的にしか実施されていない。そのため、本評価では、能登半島北岸断層帯を除いた活断 層について、日本海南西部の長期評価で用いた手法に基づいて、M7.0以上の地震が発生す る確率を評価したが、以下のような課題があることに留意する必要がある。

本評価では、2024年1月1日に石川県能登地方で発生したM7.6の地震で活動した能登 半島北岸断層帯を除き、評価対象の海域活断層(帯)の活動履歴を解明することが出来なか った。その主な理由は反射断面の分解能が不十分であることと、断層によって変位している 地層の正確な年代が解明できないことにある。そのため、最終氷期侵食面、後期更新世段丘 面高度、中部更新統(Q1層)基底などを基準面として上下変位量を測定し、断層すべり角 の横ずれ/縦ずれ比がこの海域で発生した地震の発震機構解から推定した比の範囲内にあ ると仮定し、平均変位速度を推定した。反射断面の分解能や堆積層の年代精度の向上によっ て、本評価の信頼性の向上が期待できる。さらに活動履歴を直接解明するための調査研究も 望まれる。そのためにタービダイトなどの堆積物採取による古地震調査も活動履歴の推定 に貢献できる可能性がある。また、平均変位速度については、Wallace-Bott 仮説に基づいた 断層すべり角の横ずれ/縦ずれ比から個別の断層で推定を試みたが、一部の断層で信頼度 の低い結果となった。そのため、本評価では地震データから求めた断層すべり角の横ずれ/ 縦ずれ比を全ての評価対象の海域活断層(帯)に適用した。Wallace-Bott 仮説を用いても信 頼度の高い結果が出せるよう、断層の走向や傾斜角の誤差も考慮した断層すべり角の横ず れ/縦ずれ比を用いて平均変位速度を推定する方法の検討も必要である。

活断層の認定については、反射法地震探査における測線の分布と密度及び断面の分解能 の制約がある。主に用いた産業技術総合研究所のシングルチャンネルの反射断面は、3.5-6.0 km 程度の間隔の格子状測線に沿って得られており、海底下数百 m までの断層の有無を 観察できる。そのため、格子状測線がカバーする範囲にある海域活断層はほぼ認定できてい ると考えられる。ただし、変位基準面のずれの量を測定するための垂直分解能は5m(往復 走時で 0.05 秒)程度であるため、分解能未満のずれを見落としている可能性もある。逆に、 変位基準面の対比には不確定性があるため、既に活動を停止した断層を活断層として認定 している可能性もある。

一方、場所によっては海岸から5-10 km 以内の陸に近い海域は断層を認定するための 反射法地震探査等のデータが欠落している。そのため、この海域に本評価では認定していな い海域活断層が存在する可能性があり、その活断層において地震が発生した場合、陸域では 大きな揺れに見舞われ、津波に関しても地震発生からわずかな時間で陸に到達するおそれ がある。また、評価対象の海域活断層(帯)や海域の短い活断層においては陸側端が確認で きていないものもある。このような沿岸海域の活断層情報の欠如を解消し、活断層評価の信 頼性を高めるために、小型船を用いた沿岸海域の精密な海底地形調査や高分解能の音波探 査等を実施し、活断層の分布を確認するとともに、必要に応じて海底堆積物の採取と年代測 定を行い、断層の活動履歴や平均変位速度の解明を進めることが望まれる。また、断層が沿 岸陸域に達する可能性を検討するため、隣接する海岸の隆起沈降や変動地形の詳細な調査 も重要である。

活断層の形状については、探査深度が不十分なため、断層の深部構造の情報を得ること が難しく、断層傾斜には不確定性が含まれる。マルチチャンネル反射法地震探査データも得 られているが、測線間隔が広いため、深部構造を確認できない断層が数多く残されている。 断層の深部形状や地震発生層の厚さの推定は、強震動評価や津波評価に必要な断層モデル

39

の構築にも重要となる。このためには、マルチチャンネル反射法地震探査に加え、地震活動 や地殻変動、ブーゲー重力異常や地殻熱流量・地温勾配、キュリー点深度など様々な地球物 理学データを用いて検討することが望まれる。ただし、海域でそれらのデータを取得するこ とは容易ではないため、様々な機関が様々な目的で取得するデータや成果を収集し、評価に 活用しやすい形で整理することも重要である。

さらに、複数の活動区間が同時に活動する確率や隣接する海域活断層の連動の可能性に ついて評価するための検討も必要である。また、既知の活断層以外の震源断層において大 きな被害を伴う地震が発生していることを踏まえ、既知の活断層以外による地震の評価も 含め、地域単位の地震発生確率を算出するための長期予測手法の高度化についても検討す る必要がある。

評価対象の海域活断層(帯)の中には、中日本地域の主要活断層帯の海域延長部周辺に 位置しているものもある。断層の位置や形状からこれらの海域活断層が主要活断層帯と一 連の断層帯として同時に活動する可能性も考えられるため、これらの断層の位置や形状、活 動性及び周辺の地質構造、重力異常などのデータを基に、連動に関する調査研究を進める必 要がある。また、本評価では海域活断層について、これまでに評価されてきた主要活断層帯 と重複を避けて評価するため、陸域の活断層の地域評価の区域とは重複しないよう区域分 けした。今後、陸域と海域の活断層の長期評価結果を用い、陸域と海域を跨ぐ区域を設定し て評価を行う場合には、主要活断層帯の海域部と評価対象の海域活断層(帯)では、平均活 動間隔の推定など評価方法が異なることに留意する必要がある。

能登半島北岸断層帯に関しては、低位段丘を過去の活動の痕跡として確率を求めたが、 段丘の年代は一部を除いて明らかになっていない。また、海底の反射断面で観察された断層 変位量と年代の異なる段丘面高度から推定した平均隆起速度や平均変位速度にも差がある。 今後の調査によって、活動区間及び全体の活動履歴及び活動様式の解明が望まれる。

- 注12:地震本部では、個々の起震断層を評価するだけでなく、地域の周辺に分布している活断層で発生す る地震を総合的に評価することが望ましいため、ある評価地域に分布する複数の活断層の活動を考慮 した地域評価を行うこととしている(地震調査研究推進本部地震調査委員会長期評価部会,2010)。本 評価では、特定の地域の評価については、評価地域名をとって〇〇地域の地域評価とよぶ。
- 注13:「日本海南西部の海域活断層の長期評価(第一版)一九州地域・中国地域北方沖一」で使用されている、「断層トレース」という用語と本評価における「断層線」という用語は、同じ意味として用いている。
- 注14:調査測線に粗密があり、厳格に境界を決めることはできないため、図2-1では浅部沿岸の評価用 データ不足範囲として、おおよその範囲を黄色で示した。
- 注15:1997 年10 月1日以降の気象庁震源カタログには、気象庁の観測データのほか、国立研究開発法人 防災科学技術研究所、北海道大学、弘前大学、東北大学、東京大学、名古屋大学、京都大学、高知 大学、九州大学、鹿児島大学、国立研究開発法人産業技術総合研究所、国土地理院、国立研究開発 法人海洋研究開発機構、公益財団法人地震予知総合研究振興会、青森県、東京都、静岡県、神奈川 県温泉地学研究所のデータ、2016 年熊本地震合同観測グループのオンライン臨時観測点(河原、熊 野座)、米国大学間地震学研究連合(IRIS)の観測点(台北、玉峰、寧安橋、玉里、台東)のデータ

を用いている。

- 注16:本評価文の主文では、「変位」を一般的にわかりやすいように「ずれ」という言葉で表現している。 ここでは、専門用語である「変位」が主文の「ずれ」に対応するものであることを示すため、両者を 併記した。以下、文章の中では「変位」を用いる。なお、活断層の専門用語では、「変位」は切断を 伴う「ずれの成分」と、切断を伴わない「撓みの成分」よりなる。
- 注 17:ここでは、それぞれの地震の発生確率の合値を、有効数字1桁(10-20%に確率が収まる場合は、 有効数字2桁)で表記している。
- 注18:活断層の長期評価手法(地震調査研究推進本部地震調査委員会長期評価部会,2010)では、長さが20 kmに満たない短い活断層や単位区間が単独で活動する場合に、その長さに基づき松田(1975)の経 験式を用いて地震の規模を推定した場合は規模を過小評価している可能性があるとし、地表に変位 が現れている活断層については、最低限考慮すべき地震の規模として M6.8 を設定するとしている。 本評価においても、断層長さに基づき地震の規模を評価した結果が M6.8 未満となる場合は M6.8 を 設定している。

文献

- Abe, K. (1985): Quantification of major earthquake tsunamis of the Japan Sea. Physics of the Earth and Planetary Interiors, 38, 214-223.
- 阿部信太郎・荒井良祐・岡村行信(2010a): 菊川断層帯海域延長部における断層分布と活動 性について.活断層・古地震研究報告, 10, 81-118.
- 阿部信太郎・荒井良祐・岡村行信(2010b):西山断層帯海域延長部における断層分布と活動 性について.活断層・古地震研究報告,10,119-148.
- 阿部信太郎・伊藤谷生・山本博文・荒井良祐・中山貴隆・岡村行信(2011):福井平野東縁 断層帯海域延長部における断層分布と活動性について.活断層・古地震研究報告,11, 151-175.
- 阿部信太郎・山本博文・荒井良祐(2012):高分解能マルチチャンネル音波探査記録に基づ く郷村断層帯海域延長部の断層分布・性状について.活断層・古地震研究報告,12,195-240.
- Bott, M. H. P. (1959): The mechanics of oblique slip faulting. Geological Magazine, 96(2), 109-117.
- Creveling, J. R., Mitrovica, J. X., Clark, P. U., Waelbroeck, C. and Pico, T. (2017): Predicted bounds on peak global mean sea level during marine isotope stages 5a and 5c. Quaternary Science Reviews, 163, 193-208.
- Di Giacomo, D., Bondár, I., Storchak, D. A., Engdahl, E. R., Bormann, P. and Harris, J. (2015): ISCGEM: Global Instrumental Earthquake Catalogue (1900-2009): III. Re-computed Ms and mb, proxy *Mw*, final magnitude composition and completeness assessment. Physics of the Earth and Planetary Interiors, 239, 33-47.
- Di Giacomo, D., Engdahl, E. R. and Storchak, D. A. (2018): The ISC-GEM Earthquake Catalogue (1904–2014): status after the Extension Project. Earth System Science Data, 10, 1877-1899.
- Expedition 346 Scientists (2014): Asian Monsoon: onset and evolution of millennial-scale variability of Asian monsoon and its possible relation with Himalaya and Tibetan Plateau uplift. Integrated Ocean Drilling Program Expedition 346 Preliminary Report, 346, doi:10.2204/iodp.pr.346.2014.
- Frohlich, C. (2001): Display and quantitative assessment of distributions of earthquake focal mechanisms. Geophysical Journal International, 144, 300-308.
- Fujii, Y. and Satake, K. (2024): Slip distribution of the 2024 Noto Peninsula earthquake (M_{JMA} 7.6) estimated from tsunami waveforms and GNSS data. Earth, Planets and Space, 76, 44.
- Fukushima, Y., Ishimura, D., Takahashi, N., Iwasa, Y., Malatesta, L. C., Takahashi, T., Tang, C-H., Yoshida, K. and Toda, S. (2024): Landscape changes caused by the 2024 Noto Peninsula earthquake in Japan. Science Advances, 10(49), eadp9193.
- 福山英一・石田瑞穂・Douglas S. Dreger・川井啓廉(1998):オンライン広帯域地震データを 用いた完全自動メカニズム決定. 地震第2輯, 51, 149-156.
- GEBCO Compilation Group (2023): GEBCO 2023 Grid. doi:10.5285/f98b053b-0cbc-6c23-e053-6c86abc0af7b.
- 後藤秀昭(2012):数値標高モデルから作成した日本列島の地形アナグリフ―解説と地図―. 広島大学大学院文学研究科論集,第72巻特輯号,1-69.

- Gutenberg, B. and Richter, C. F. (1944): Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185-188.
- Hamada, M., Hiramatsu, Y., Oda, M. and Yamaguchi, H. (2016): Fossil tubeworms link coastal uplift of the northern Noto Peninsula to rupture of the Wajima-oki fault in AD 1729. Tectonophysics, 670, 38-47.
- 北陸電力株式会社(2022):志賀原子力発電所2号炉敷地周辺の地質・地質構造について デ ータ集2(音波探査記録).志賀原子力発電所適合性審査資料 SK2-地 050-03,985p.
- 池原研・井上卓彦・村上文敏・岡村行信(2007): 能登半島西方沖の堆積作用・完新世堆積 速度と活断層の活動間隔. 地震研究所彙報, 82, 313-319.
- 井上卓彦・村上文敏・岡村行信・池原研(2007):2007年能登半島地震震源域の海底活断 層. 地震研究所彙報, 82, 301-312.
- 井上卓彦・岡村行信(2010): 能登半島北部周辺 20 万分の1海域地質図及び説明書. 海陸シ ームレス地質情報集「能登半島北部沿岸域」.

International Seismological Centre (2024): ISC-GEM Earthquake Catalogue. doi:10.31905/d808b825.

- Ishibe, T., Terakawa, T., Hashima, A., Mochizuki, M. and Matsu'ura R.S. (2024): Can the Regional 3D Stress Field according to the Wallace-Bott Hypothesis predict fault slip directions of future large earthquakes?. Earth, Planets and Space, 76, 26.
- Ishiyama, T., Kato, N., Sato, H., Koshiya, S., Toda, S. and Kobayashi, K. (2017a): Geometry and slip rates of active blind thrusts in a reactivated back-arc rift using shallow seismic imaging: Toyama basin, central Japan. Tectonophysics, 718, 72-82.
- Ishiyama, T., Sato, H., Kato, N., Koshiya, S., Abe, S., Shiraishi, K. and Matsubara, M. (2017b): Structures and active tectonics of compressionally reactivated back-arc failed rift across the Toyama trough in the Sea of Japan, revealed by multiscale seismic profiling. Tectonophysics, 710-711, 21-36.
- Itoh, Y. and Nagasaki, Y. (1996): Crustal shortening of southwest Japan in the late Miocene. Island Arc, 5, 337-353.
- Itoh, Y., Tsutsumi, H., Yamamoto, H. and Arato, H. (2002): Active right-lateral strike-slip fault zone along the southern margin of the Japan Sea. Tectonophysics, 351, 301-314.
- 岩崎哲治(1992):北陸~山陰海域の石油地質.石油技術協会誌,57,1,59-66.

泉 紀明・長野勝行・西澤あずさ・小野寺健英・伊藤弘志・笹原 昇(2008): 2007 年能登半 島地震震源域における海底地形及び変動地形について.海洋情報部技報, 26, 57-62.

地震調査研究推進本部地震調査委員会(2001):「長期的な地震発生確率の評価手法について」. 46p.

- 地震調査研究推進本部地震調査委員会(2003a):「野坂・集福寺断層帯の長期評価」.19p. 地震調査研究推進本部地震調査委員会(2003b):「三方・花折断層帯の長期評価」.39p. 地震調査研究推進本部地震調査委員会(2004):「柳ヶ瀬・関ヶ原断層帯の長期評価」.29p. 地震調査研究推進本部地震調査委員会(2007):「警固断層帯の評価」.32p. 地震調査研究推進本部地震調査委員会(2013a):「九州地域の活断層の長期評価(第一版)」.
 - 81p.

地震調査研究推進本部地震調査委員会(2013b):「西山断層帯の長期評価(一部改訂)」.32p. 地震調査研究推進本部地震調査委員会(2015):「関東地域の活断層の長期評価(第一版)」.

127p.

地震調査研究推進本部地震調査委員会(2016a):「中国地域の活断層の長期評価(第一版)」. 70p.

地震調査研究推進本部地震調査委員会(2016b):「菊川断層帯の長期評価(一部改訂)」.28p. 地震調査研究推進本部地震調査委員会(2017):「四国地域の活断層の長期評価(第一版)」.

57p.

地震調査研究推進本部地震調査委員会(2022):「日本海南西部の海域活断層の長期評価(第 一版)一九州地域・中国地域北方沖一(令和4年3月25日公表)」. 99p.

地震調査研究推進本部地震調査委員会(2024):「令和6年能登半島地震の評価(令和6年2 月9日公表)」、52p.

地震調査研究推進本部地震調査委員会長期評価部会(2005):「基盤的調査観測対象活断層の 評価手法」-これまでの長期評価手法のとりまとめ-. 46p.

- 地震調査研究推進本部地震調査委員会長期評価部会(2010):「活断層の長期評価手法(暫定版)」. 117p.
- 地震調査研究推進本部政策委員会調査観測計画部会(2009):「新たな活断層調査について」. 13p.

地震予知総合研究振興会(2005):江戸時代の歴史地震の震源域・規模の再検討作業中間報 告書-42 件の解析結果について-. 28p.

海上保安庁海洋情報部(2001):海底地形の名称に関する検討会.

(https://www1.kaiho.mlit.go.jp/KOKAI/ZUSHI3/topographic/JCUFN/jcufn.html)

海上保安庁海洋情報部(2004):沿岸海域海底活断層調查「加賀-福井沖」資料整理作業報告書. 55p.

垣見俊弘(1989):固有地震説雑考.活断層研究,7,1-4.

片川秀基・浜田昌明・吉田 進・廉澤 宏・三橋 明・河野芳輝・衣笠善博(2005): 能登半島 西方海域の新第三紀〜第四紀地質構造形成.地学雑誌, 114(5), 791-810.

活断層研究会編(1980):「日本の活断層-分布図と資料-」.東京大学出版会,363p.

活断層研究会編(1991):「新編日本の活断層-分布図と資料-」. 東京大学出版会, 437p.

Kanamori, H. (1977): The energy release in great earthquakes. Journal of Geophysical Research, 82, 2981-2987.

気象庁(2012):発表した津波警報・注意報の検証

(https://www.data.jma.go.jp/svd/eqev/data/tsunamihyoka/index.html). (令和7年4月閲覧) 気象庁 (2025):「震源データ」

(https://www.data.jma.go.jp/svd/eqev/data/bulletin/hypo.html). (令和7年4月閲覧) 小池一之・町田 洋編 (2001):日本の海成段丘アトラス. 東京大学出版会, 122p.

松田時彦(1975):活断層から発生する地震の規模と周期について.地震第2輯,28,269-283.

松田時彦(1990):最大地震規模による日本列島の地震分帯図.地震研究所彙報,65,289-

44

319.

- 松田時彦・山崎晴雄・中田 高・今泉俊文(1980):1896 年陸羽地震の地震断層. 地震研究所 彙報, 55, 795-855.
- 松浦律子・中村 操(2021):近世・近代初期の歴史地震の系統的解析—20 年間のまとめ(改 訂).歴史地震, 36, 235-239.
- 三澤良文(1997):大陸棚に分布する海底活断層(その1)一能登半島北方海域での調査手 法の研究一.東海大学海洋学部紀要,43,185-200.
- 文部科学省研究開発局・防災科学技術研究所(2013):「ひずみ集中帯の重点的調査観測・研究」総括成果報告書. 98p.
- 文部科学省研究開発局・海洋研究開発機構(2020):「海域における断層情報総合評価プロジ ェクト」令和元年度成果報告書. 385p.
- 文部科学省研究開発局・東京大学地震研究所(2014):「日本海地震・津波調査プロジェクト」 平成 25 年度成果報告書. 313p.
- 文部科学省研究開発局・東京大学地震研究所(2016):「日本海地震・津波調査プロジェクト」 平成 27 年度成果報告書. 432p.
- 文部科学省研究開発局・東京大学地震研究所(2017):「日本海地震・津波調査プロジェクト」 平成 28 年度成果報告書. 420p.
- 文部科学省研究開発局・東京大学地震研究所(2021):「日本海地震・津波調査プロジェクト」 令和2年度成果報告書. 606p.
- 中嶋 健(2018):日本海拡大以来の日本列島の堆積盆テクトニクス.地質学雑誌,124,693-722.
- 日本海における大規模地震に関する調査検討会(2014):日本海における大規模地震に関す る調査検討会報告書.
- Nishimura, T., Hiramatsu, Y. and Ohta, Y. (2023): Episodic transient deformation revealed by the analysis of multiple GNSS networks in the Noto Peninsula, central Japan. Scientific Reports, 13, 8381.
- 野 徹雄・ 佐藤 壮・小平秀一・高橋成実・石山達也・佐藤比呂志・金田義行(2014):日本 海東部におけるマルチチャンネル反射法地震探査. JAMSTEC Rep. Res. Dev., 19, 29-47.
- 岡村行信(2000): 音波探査プロファイルに基づいた海底活断層の認定-fault related fold, growth strata 及び growth triangle の適用-. 地質調査所月報, 51, 59-77.
- 岡村行信(2008):海域における活断層調査-現状と課題-.活断層研究, 28, 31-39.
- Okamura, Y. (2016): Active tectonics around the junction of Southwest Japan and Ryukyu arcs: Control by subducting plate geometry and pre - Quaternary geologic structure. Island Arc, 25, 287-297.
- 岡村行信(2016):見島沖海底地質図及び説明書. 20 万分の 1 海洋地質図, no.88 (CD), 産 業技術総合研究所地質調査総合センター.
- 岡村行信(2017):響灘海底地質図及び説明書. 20 万分の 1 海洋地質図, no.89(CD), 産業 技術総合研究所地質調査総合センター.
- 岡村行信(2019):日本海における活断層の分布と今後の課題.地震第2輯, 71, 185-199.

- 岡村行信・井上卓彦・阿部信太郎(2014):山陰西部及び九州北部沖の第四紀断層,活断層・ 古地震研究, 14, 157-177.
- 岡村行信・上嶋正人・木川栄一・駒澤正夫(2002): 能登半島東方海底地質図海洋地質図. no.59 (CD),産業技術総合研究所地質調査総合センター.
- 岡村行信・上嶋正人・石原丈実・木川栄一(2007): 能登半島西方海底地質図海洋地質図. no.61 (CD),産業技術総合研究所地質調査総合センター.
- 岡村行信・大上隆史・井上卓彦・佐藤智之・有元 純(2024):第十報 2024 年能登半島地震の緊急調査報告(令和6年(2024年)能登半島地震に伴う海底活断層の変位). 産業技術総合研究所地質調査総合センター,

(https://www.gsj.jp/hazards/earthquake/noto2024/noto2024-10.html). (令和7年4月閲覧) 岡村行信・竹内圭史・上嶋正人・佐藤幹夫(1994): 佐渡島南方海底地質図. 産業技術総合 研究所地質調査総合センター.

- 大川直樹・今堀誠一・柿崎 聡・城戸麻千子・山科起行・三石裕之・寺部和伸・符 罕・グエ ン ビンティ タイン・郷 隆之 (2016): 基礎試錐 「上越海丘」 の坑井地質調査結果概 要. 石油技術協会誌, 81(3), 243-255.
- 太田陽子・平川一臣(1979): 能登半島の海成段丘とその変形. 地理学評論, 52, 69-189.
- Otsuka, Y. (1939): Tertiary crustal deformations in Japan. Jubilee Publication for Commemoration of Professor H. Yabe's 60th Birthday, 481-519.
- Sagawa, T., Nagahashi, Y., Satoguchi, Y., Holbourn, A., Itaki, T., Gallagher, S. J., Saavedra-Pellitero, M., Ikehara, K., Irino, T. and Tada, R. (2018): Integrated tephrostratigraphy and stable isotope stratigraphy in the Japan Sea and East China Sea using IODP Site U1426, U1427, and U1429, Expedition 346 Asian Monsoon. Progress in Earth and Planetary Science, 5:18.
- Sakai, S., Kato, A., Iidaka, T., Iwasaki, T., Kurashimo, E., Igarashi, T., Hirata, N., Kanazawa, T. and Group for the Joint Aftershock Observation of the 2007 Noto Hanto Earthquake. (2008): Highly resolved distribution of aftershocks of the 2007 Noto Hanto Earthquake by a dense seismic observation. Earth, Planets and Space, 60, 83–88.
- 産業技術総合研究所地質調査総合センター (2013):「日本重力データベース DVD 版」数値 地質図 P-2.
- 産業技術総合研究所地質調査総合センター(2025):20 万分の1日本シームレス地質図 V2 (https://gbank.gsj.jp/seamless/). (令和7年4月閲覧).
- 佐藤比呂志・阿部 進・斉藤秀雄・加藤直子・伊藤谷生・川中 卓(2007a): 二船式による 2007 年能登半島地震震源域の反射法地震探査. 地震研究所彙報, 82, 275-299.
- 佐藤比呂志・岩崎貴哉・金沢敏彦・宮崎真一・加藤直子・酒井慎一・山田知朗・宮内崇裕・ 伊藤谷生・平田 直(2007b): 反射法地震探査・余震観測・地殻変動から見た 2007 年能 登半島地震の特徴について. 地震研究所彙報, 82, 369-379.
- Schwartz, D. P. and Coppersmith, K. J. (1984): Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones. Journal of Geophysical Research, 89, 5681-5698.
- Schwartz, D. P. and Coppersmith K. J. (1986): Seismic Hazards -- New trends in analysis using

geologic data. In Active Tectonics, National Academy Press, Washington, DC, 215-230.

Shinohara, M., Hino, R., Takahashi, T., Obana, K., Kodaira, S., Azuma, R., Yamada, T., Akuhara, T., Yamashita, Y., Kurashimo, E., Murai, Y., Isse, T., Nakahigashi, K., Baba, H., Ohta, Y., Ito, Y., Yakiwara, H., Nakatani, Y., Fujie, G., Sato, T., Shiobara, H., Mochizuki, K., Sakai, S. and The R/V Hakuho-maru KH-24-JE01 and KH-24-JE02C shipboard science parties (2025): Precise aftershock activity in the marine source region of the 2024 Noto-Hanto earthquake by rapid response observation using ocean bottom seismometers. Earth, Planets and Space, 77, 43.

宍倉正展・越後智雄・行谷佑一(2020):能登半島北部沿岸の低位段丘および離水生物遺骸 群集の高度分布からみた海域活断層の活動性.活断層研究, 53, 33-49.

総務省消防庁(2025):「災害情報」(https://www.fdma.go.jp/disaster).(令和7年4月閲覧)

杉山雄一・山本博文・村上文敏・宇佐見琢哉・畑山一人・島崎裕行(2013): 柳ヶ瀬・関ヶ 原断層帯主部北方延長域(坂井市沖〜福井市沖)における活断層の分布と活動性.活断

層·古地震研究報告, 13, 145-185.

- 武村雅之(1990):日本列島およびその周辺地域に起こる浅発地震のマグニチュードと地震 モーメントの関係.地震第2輯,43,257-265.
- 竹内 章(2021):富山トラフ及び周辺海域のネオテクトニクス.地質学雑誌,127,145-164. 玉木賢策・本座栄一・湯浅真人・西村清和・村上文敏(1981):日本海中部海域広域海底地 質図. no.15,地質調査所(現 産業技術総合研究所地質調査総合センター).
- 玉木賢策・湯浅真人・村上文敏(1982):隠岐海峡海底地質図.20万分の1海洋地質図, no.20, 地質調査所(現 産業技術総合研究所地質調査総合センター).
- 田中 隆・小草欽治(1981):山陰沖における中期中新世以降の構造運動.地質学雑誌,87, 725-736.
- 立石 良・安江健一・石山達也・金田平太郎・廣内大助・松多信尚・白濱吉起・堤 浩之・後 藤玲奈・藤波哲平・澤田 渚 (2024): 生物遺骸の分布高度に基づく 2023 年・2024 年能 登半島地震に伴う海岸隆起調査. Japan Geoscience Union Meeting 2024, U15-P83.

Terakawa, T. and Matsu'ura, M. (2008): CMT data inversion using a Bayesian information criterion to estimate seismogenic stress fields. Geophysical Journal International, 172, 674-685.

- Terakawa, T. and Matsu'ura, M. (2010): The 3-D tectonic stress fields in and around Japan inverted from centroid moment tensor data of seismic events. Tectonics, 29, TC6008.
- 徳山英一・本座栄一・木村政昭・倉本真一・芦 寿一郎・岡村行信・荒戸裕之・伊藤康人・ 徐 垣・日野亮太・野原 壯・阿部寛信・坂井眞一・向山建二郎(2001):日本周辺海域 中新世最末期以降の構造発達史. 海洋調査技術, 13, 27-53.
- 宇佐美龍夫・石井 寿・今村隆正・武村雅之・松浦律子(2013):日本被害地震総覧 599-2012. 東京大学出版会, 694p.
- 宇津徳治(1979):1885年~1925年の日本の地震活動-M6以上の地震および被害地震の再調査-. 地震研究所彙報,54,253-308.
- 宇津徳治(1990):世界の被害地震の表(古代から 1989 年まで). 宇津徳治退官記念出版, 243p.
- 宇津徳治(1999):地震活動総説.東京大学出版会,876p.

- Wallace, R. E. (1951): Geometry of shearing stress and relation to faulting. The Journal of Geology, 59, 118-130.
- Yamamoto, H. (1993): Submarine geology and post-opening tectonic movements in the southern region of the Sea of Japan. Marine Geology, 112, 133-150.
- 山本博文・上嶋正人・岸本清行 (1989): 鳥取沖海底地質図及び同説明書. 海洋地質図, no.35, 27p, 地質調査所 (現 産業技術総合研究所地質調査総合センター).
- 山本博文・上嶋正人・岸本清行(1993):経ヶ岬沖海底地質図および説明書. 20 万分の1 海 洋地質図, no.40, 39p, 地質調査所(現 産業技術総合研究所地質調査総合センター).
- 山本博文・上嶋正人・岸本清行・有田正史・木下泰正・池原 研・片山 肇・佐藤幹夫・盛谷 智之・中村光一・西村清和・宮崎純一・駒沢正夫(2000):ゲンタツ瀬海底地質図.海 洋地質図, no.50, 産業技術総合研究所地質調査総合センター.
- Yokoyama Y., Esat, T. M., Thompson, W. G., Thomas, A. L., Webster, J. M., Miyairi, Y., Sawada, C., Aze, T., Matsuzaki, H., Okuno, J., Fallon, S., Braga, J.-C., Humblet, M., Iryu, Y., Potts, D. C., Fujita, K., Suzuki A. and Kan, H. (2018): Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum. Nature, 559 (7715), 603-607.
- 吉田 進・野口猛雄・長 貴浩・島崎裕行・木場正信・佐藤比呂志(2007): 2007 年能登半島 地震の海底地殻変動. 地震研究所彙報, 82, 333-344.
- 吉川敏之・鹿野和彦・柳沢幸夫・駒澤正夫・上嶋正人・木川栄一(2002):珠洲岬, 能登飯 田及び宝立山地域の地質.地域地質研究報告(5万分の1地質図幅),産業技術総合研 究所地質調査総合センター.

表2 氵	毎域の短い	活断層の	位置
------	-------	------	----

		端点1			端点2				
地域 細分	長さ20 km未満の 活断層		北緯	東経		北緯	東経	長さ (km)	図中の 記号 [※]
	^{いざきみさき} 伊笹岬沖断層	西端	35° 53'	134° 28'	東端	35° 52'	134° 32'	6	а
	^{かすみ} 香住沖断層	南西端	35° 50'	134° 38'	北東端	35° 53'	134° 43'	9	b
	^{まんじゅう} 万十北断層	南西端	35° 59'	134° 52'	北東端	36° 04'	135°02'	18	С
	うらしまぐり 浦島礁南方断層	北西端	35° 55'	135° 26'	南東端	35° 47'	135° 32'	17	d
_	^{うらしまぐり} 浦島礁北方南断層	北端	36°08'	135°16'	南端	36°01'	135°20'	15	е
西部	^{うらしまぐり} 浦島礁北方東断層	西端	36°24'	135°16'	東端	36° 24'	135° 25'	13	f
	美浜湾断層	北端	35° 51'	135° 53'	南端	35° 41'	135° 56'	19	g
	越前岬西方沖南断層	西端	35° 53'	135° 35'	東端	35° 56'	135° 47'	19	h
	越前岬西方沖中断層	西端	35° 56'	135° 35'	東端	35° 58'	135° 46'	17	i
	ゲンタツ瀬南方断層	北端	36°14'	135° 52'	南端	36° 07'	135° 54'	13	j
	ゲンタツ瀬南東断層	北端	36°10'	135° 43'	南端	36° 05'	135° 45'	11	k
東	前ノ瀬南方断層	南西端	36° 57'	136°14'	北東端	37° 04'	136°21'	17	I
部	沖ノ瀬断層	南端	37° 07'	136° 20'	北東端	37° 15'	136°24'	16	m

※ 図中の記号は図2の記号を示す

表3 評価様式

				評価項目			
	Л	我		個別の活断層	地域評価		
	評価対象の 既存の活断層の長期評価 海域活断層(帯) において未評価の断層(帯)		20km	表1-1参照 表1-2参照	確率評価に 含める		
海域	主要活断層帯の 海域部	主要活断層帯の長期評価 において評価済の区間	以上	(位置の確認)	確率評価に 含めない		
活断層	海域の短い活断層	既存の活断層の長期評価 において未評価の断層	20km	表2参照	確率評価に 含めない		
		既存の活断層の長期評価 において評価済の断層	未満	(位置の確認)	確率評価に 含めない		

発生時期	震央地名 (発生地域)	地震規模 (M)	被害	備考
1325年12月5日	(湖北・若狭)	6. 5	敦賀気比神宮や琵琶湖竹生島で倒壊等被害、延暦寺で 多数の灯が消え、京都で強震、余震が1か月続いた	柳ヶ瀬・関ヶ原断層帯の陸域、椿坂付近の活動の可能 性
1640年11月23日	(大聖寺付近)	6. 5	家屋倒壊・人畜死傷多数	金沢で水路の水がこぼれ出た
1691年	(大聖寺付近)	-	倒壊家屋があった?	月日不明で別の地震の誤写の可能性あり
1729年8月1日	(能登北中部)	6.6	輪島村で全壊28、半壊86 珠洲郡・鳳至郡で家屋損 壊・倒壊合計791、山崩れ31か所等死5 穴水ー七尾間 で海岸崩れあり	金沢では被害なく能登北部町野周辺に被害集中
1751年5月21日	(上越)	7.0	高田平野西部から桑取川、名立川、能生川流域の海岸 付近に、海底隆起や、崖崩れの連なりが見られた 土 砂崩壊によって海沿いや山中の川沿いの集落で8割以上 の死や住家倒壊が見られた	海底が隆起したことが同時代絵図にもあり、海域活断 層で発生した可能性がある
1802年12月9日	(佐渡)	7.0	小木で453戸ほぼ全壊、うち328戸焼失、死18 被害は 小木半島と国中平野西半分で大きかった	午前中に前震あり 小木半島南岸沿いが最大2m程度隆 起した 江戸でも有感
1815年3月1日	(小松付近)	6. 3	小松城破損だが、被害詳細は不詳 伊勢や京都、武生、宮津等で有感	有感範囲の広さと中程度被害が広いことから、陸では なく海域で発生した可能性が高い
1892年12月9日 1892年12月11日	(能登西部)	6.4 6.3	羽咋郡で家屋・土蔵に破損被害 合わせて死1傷5 潮位の異常もあったらしい	11日は被害地域がやや南寄り
1896年4月2日	(能登北東部)	5. 7	能登半島北東端部で土蔵倒壊2等、禄剛埼燈台破損など 局地的被害	
1925年5月23日	兵庫県北部 (円川河口付近)	6.8	豊岡市の円山川流域で河口から上流にかけて10km程度 の領域に倒壊が集中した 全壊1295、死428、傷834等 城崎や豊岡で火災が発生して被害を増幅した	北但馬地震
1927年3月7日	京都府北部 (丹後半島)	7.3	峰山町で死亡率22%など死2912、傷7806 京都府の家屋 全壊4899、半壊4603、全焼2019	北丹後地震 沿岸部も含めた郷村断層と、山田断層の一部を震源と した地震で、地表地震断層を伴った 丹後半島北岸域 では1m以上の津波も観測 4月1日M6.4の余震が発生
1930年10月17日	石川県西方沖 (大聖寺付近)	6.3	大聖寺・小松などで煙突の破損や落壁、がけ崩れ、亀 裂等の被害 小松で噴水は液状化か?	4分前に前震(M5.3)があった
1933年9月21日	石川県能登地方 (能登東部)	6.0	七尾湾南岸沿い10kmほどの局所的被害で家屋倒壊2、破 損131、死3など	 液状化が発生し、家屋の傾斜被害の報告もある
1949年1月20日	兵庫県北部 (新温泉町付近)	6.3	照来(てらぎ)カルデラで土蔵の屋根の移動等小被害	余震が少なかった

表4 日本海中南部の主な被害地震・被害津波

発生時期	震央地名 (発生地域)	地震規模 (M)	被害	備考
1952年3月7日	石川県西方沖 (大聖寺沖)	6. 5	あわら市北潟や加賀市塩屋など大聖寺川河口付近で被 害が大きく、壁の剥落や山崩れ、道路の亀裂など生じ た	大聖寺沖地震
1963年3月27日	若狭湾	6.9	敦賀湾・若狭湾沿岸沿い50kmの範囲に小被害が生じた 美浜町で全壊2	越前岬沖地震 野坂断層帯付近で発生
1983年10月16日	新潟県上中越沖 (上越沖)	5.3	糸魚川市能生で石灯籠倒壊や石鳥居の折損	
1985年10月18日	能登半島沖 (北部北方)	5. 7	輪島で橋脚破損、重傷1、輪島・珠洲両市で計12小中学 校に破損被害	七ツ島付近
1993年2月7日	能登半島沖 (北西沖)	6.6	能登北部で全壊1、重症1のほか、金沢市で火災など広 域に影響 停電や断水が数千戸規模で発生した	輪島で26cmの津波
2000年6月7日	石川県西方沖 (若狭海丘列北)	6. 2	重傷1、住家破損1など軽被害	
2003年12月22日	佐渡付近 (小木半島北沖)	4. 7	相川合同庁舎で多数の亀裂	
2007年3月25日	能登半島沖 (北部西方)	6. 9	輪島市で石灯籠倒壊で死1 門前町や鳳至町中心に石川 県で全壊686など	平成19年(2007年)能登半島地震 門前断層帯の門前沖区間の活動
2012年2月8日	佐渡付近 (小木半島北沖)	5. 7	住家破損1など軽被害	
2020年3月13日	石川県能登地方 (北西部)	5.5	富山市、氷見市で軽傷2	平成19年(2007年)能登半島地震の活動域の東端で発 生
2022年6月19日	石川県能登地方 (北東部)	5.4	珠洲市北東部で軽傷6、住家破損73の被害	令和6年能登半島地震の活動で最初に人的被害が生じ た地震
2023年5月5日	能登半島沖 (北東沖)	6.5	珠洲市で全壊40、死1等の被害	令和6年能登半島地震の活動 同日夜にM5.9の地震も 発生
2024年1月1日	石川県能登地方 (北東部)	7.6	元日の午後に発生 津波を伴った 能登半島北部を中心に、死・行方不明551 (内石川県外 8、災害関連死321) 重傷416、全壊6,483を含め住家被 害163,724等、広域に被害をもたらした (令和7年3月 11日現在)	令和6年能登半島地震の活動中最大地震 (令和7年6月1日現在) 能登半島北岸断層帯の各区間と門前断層帯の門前沖区 間の東部での海底隆起を確認 輪島市西部で最大4 m 程度の隆起などが観測された 4分前にM5.5、直前に M5.9の前震

表4 日本海中南部の主な被害地震・被害津波(続き)

震央地名は気象庁による。()内の発生地域は主として宇佐美ほか(2013)に記載されている地域を参考にした。 震源位置・規模は気象庁、宇津(1979,1990,1999)、宇佐美ほか(2013)及び松浦・中村(2021)、被害などは宇津(1999)、宇佐美ほか(2013)及び松浦・中 村(2021)による。 2020年以降の地震の被害については、総務省消防庁(2025)「災害情報」を基に記載。 地震の発生時期は全てグレゴリオ暦。

表5 文部科学省研究開発局・東京大学地震研究所(2014)による、 日本周辺の地殻構造と地震発生層の下限の深さの関係

区分	地震発生層の下限の深さ
B:厚い海洋地殻	18 km / 26 km
C:背弧リフト	18 km
D:大陸地殼	15 km

地 域	図中	活断層の	評価単位区間	各区間単独活動		信	平均変位速度		信	平均活動間隔	信
細分	の番 号	くくり (付録2)		の場合の地震規 模(M)	すれの向きと種類	粮度	推定値 [根拠] (m/千年)	沽動度	粮度	(千年) ^{※1}	粮度
	1	沖ノ礁	非方断層	7.2程度	左横ずれ	0	0.05-0.4 [縦横比]	B-C	\triangle	6 - 49	\triangle
	2	経ヶ	岬沖断層	7.4程度	北西側隆起の逆断層 (右横ずれ成分を伴う)	0	0.3-0.8[6]	В	-	5 - 14	-
	3	小浜	〔沖断層	7.4程度	左横ずれ	0	0.2-1.3 [縦横比]	A-B	\triangle	3 - 21	\triangle
	4	浦島礁:	北方北断層	7.5程度	左横ずれ	0	0.08-0.7 [縦横比]	B-C	\triangle	6 - 52	\triangle
西	5	若狭海丘	列北縁断層	7.0程度	南側隆起の逆断層	\triangle	0.3-0.7 [縦横比]	В		3 - 8	
部	6	越前岬西	百方沖北断層	7.5程度	北西側隆起の逆断層 (右横ずれ成分を伴う)	0	0.3-0.8 [縦横比]	В	Δ	5 - 15	Δ
	7	浦島礁	非東断層	7.1程度	左横ずれ	0	0.05-0.4 [縦横比]	B-C	\triangle	5 - 45	\triangle
	8-1	ゲンタツ瀬・大	ゲンタツ瀬区間	7.0程度	北西側隆起の逆断層 (右横ずれ成分を伴う)	0	0.2-0.6[9]	В	-	3 - 9	-
	8-2	アクロ末線の店帯	大グリ区間	7.4程度	北西側隆起の逆断層 (右横ずれ成分を伴う)	0	0.2-0.6[9]	В	-	6 - 15	-
	9	加佐ノ	「岬沖断層	7.2程度	南東側隆起の逆断層	0	0.2-0.6 [縦横比]	В	\triangle	4 - 11	\triangle
	10	羽咋沖東断層		7.3程度	西側隆起の逆断層	0	0.1-0.3 [縦横比]	В	\triangle	9 - 25	\triangle
	11	羽咋	沖西断層	7.0程度	西側隆起の逆断層	0	0.2-0.5 [縦横比]	В	\triangle	4 - 12	\triangle
	12	内漢	内灘沖断層		南東側隆起の逆断層	0	0.3-0.8 [縦横比]	В	\triangle	4 - 10	\triangle
	13	海士岬	押 東断層	7.0程度	南東側隆起の逆断層	0	0.8-1.1 [縦横比]	A-B	\triangle	2 - 3	\triangle
	14-1	門前断層帯	門前沖区間	7.1程度	南東側隆起の逆断層 (右横ずれ成分を伴う)	0	1.0-1.6 [縦横比]	A	Δ	1 - 2	Δ
	14-2		海士岬沖区間	6.9程度	南東側隆起の逆断層	0	0.07-0.2 [縦横比]	B-C	\triangle	9 - 25	Δ
	15	沖ノ潮	東方断層	7.4程度	南東側隆起の逆断層	0	0.2-0.3 [縦横比]	В	\triangle	14 - 21	Δ
	16-1	61. 2 . 11. 1 . 11. 11. 11.	猿山沖区間	7.1程度	南東側隆起の逆断層	0	2.1-3.1 [縦横比] **2	A	\bigtriangleup	2	\triangle
東	16-2	能登半島北岸断 層帯	輪島沖区間	7.1程度	南東側隆起の逆断層	0	1.7-2.6 [縦横比] ^{※2}	A	Δ	2	\triangle
部	16-3		珠洲沖区間	7.6程度	南東側隆起の逆断層	0	1. 7-2. 6 [16-2]	A	—	2	-
	17	輪島は	るか沖断層	7.1程度	南東側隆起の逆断層	0	0.2–0.3 [15]	В	-	10 - 14	-
	18	能登半島	出方沖断層	7.3程度	南東側隆起の逆断層	0	0.2–0.3 [15]	В	-	12 - 19	-
	19-1	舳倉島近海断層	南西区間	7.5程度	北西側隆起の逆断層	0	0.1-0.2 [縦横比]	В	\triangle	24 - 29	\triangle
	19-2	帯	北東区間	7.1程度	北西側隆起の逆断層	0	0. 1–0. 2 [19– 1]	В	-	13 - 16	-
	20-1	七尾湾東方断層	大泊鼻沖区間	7.2程度	西側隆起の逆断層	0	0.4-0.5 [縦横比]	В	Δ	5 - 6	\triangle
	20-2	帯	城ヶ崎沖区間	7.0程度	北西側隆起の逆断層	0	0.5-0.6 [縦横比]	В	Δ	4	\triangle
	21	飯田海	脚南縁断層	7.3程度	北側隆起の逆断層	0	0.1 [B級下位]	В	-	31	-
	22	富山トラ	っつ西縁断層	7.8程度	西側隆起の逆断層	0	1. 7-2. 6 [16-2]	A	—	2 - 4	-
	23	富山トラ	ラ横断断層	7.0程度	北西側隆起の逆断層	0	0.6-0.7 [縱横比]	В		3	

表6 評価対象の海域活断層(帯)の平均変位速度の推定値とそれに基づく平均活動間隔

※1:能登半島北岸断層帯を除き、平均活動間隔は1回のずれ量と平均変位速度から算出した(「3. - (2)将来の活動の可能性の評価手法」参照)ため、その 信頼度は断層の長さ・断層面の傾斜・垂直変位量の中で最も低い信頼度以下とした。

※2:ここには、最終氷期侵食面における上下変位量に基づく値を記載している。完新世段丘に基づく平均変位速度については、本文参照のこと。

表1-2で平均変位速度が斜体の断層は、本表でも平均変位速度・活動度・平均活動間隔が斜体で信頼度は不明である。

表7 推定された平均変位速度に基づいて算出される海域活断層(帯)の地震発生確率(参考)

地域細	図中 の番	活断層の	評価単位区間	断層長	信頼	各区間単独活動 の場合の地震規	今後30年以内における固有規模の 地震発生確率 ^{注17)} (%)		見模の 30年以内における痕跡を認めにくいま 震の発生確率 ^{注17)} (%)		
分	号			(km)	度	模(M)	95%信頼区間 (中央値)	計算方法	95%信頼区間 (中央値)	計算方法	
	1	沖ノ礁	悲北方断層	25	0	7.2程度	0.06-0.4 (0.1)	ポアソン	0.03-0.2 (0.05)	ポアソン	
	2	経ヶ	岬沖断層	36	Δ	7.4程度	0.2-0.6 (0.3)	ポアソン	0.09-0.3 (0.1)	ポアソン	
	3	小浜	兵沖断層	33	\triangle	7.4程度	0.1-1 (0.3)	ポアソン	0.06-0.4 (0.1)	ポアソン	
	4	浦島礁	北方北断層	40	0	7.5程度	0.06-0.4 (0.1)	ポアソン	0.03-0.2 (0.04)	ポアソン	
西	5	若狭海丘	E列北縁断層	21	\triangle	7.0程度	0.4-0.9 (0.5)	ポアソン	0. 2–0. 4 (0. 2)	ポアソン	
部	6	越前岬西	百方沖北断層	38	0	7.5程度	0.2-0.6 (0.3)	ポアソン	0.09-0.2 (0.1)	ポアソン	
	7	浦島礁	焦北東断層	23	0	7.1程度	0.07-0.5 (0.1)	ポアソン	0.03-0.2 (0.05)	ポアソン	
	8-1	ゲンタツ瀬・大	ゲンタツ瀬区間	20	0	7.0程度	0.4-0.9 (0.5)	ポアソン	0. 2–0. 4 (0. 2)	ポアソン	
	8-2	クリ用東核町唐 帯	大グリ区間	35	0	7.4程度	0.2-0.5 (0.3)	ポアソン	0.09-0.2 (0.1)	ポアソン	
	9	加佐ノ	/ 岬沖断層	25	0	7.2程度	0.3-0.7 (0.4)	ポアソン	0. 1-0. 3 (0. 2)	ポアソン	
	10	羽咋沖東断層		30	0	7.3程度	0.1-0.3 (0.2)	ポアソン	0.05-0.1 (0.07)	ポアソン	
	11	羽咋沖西断層		21	0	7.0程度	0.3-0.7 (0.4)	ポアソン	0. 1–0. 3 (0. 2)	ポアソン	
	12	内灘沖断層		29	0	7.3程度	0.3-0.8 (0.4)	ポアソン	0. 1–0. 3 (0. 2)	ポアソン	
	13	海士峰	押沖東断層	21	0	7.0程度	1-2 (1)	ポアソン	0.5-0.7 (0.6)	ポアソン	
	14-1	門前断層帯	門前沖区間	23	Δ	7.1程度	1-2 (2)	ポアソン	0.6-0.9 (0.7)	ポアソン	
	14-2		海士岬沖区間	18	0	6.9程度	0.1-0.3 (0.2)	ポアソン	0.05-0.1 (0.08)	ポアソン	
	15	沖ノ潮	顛東方断層	35	0	7.4程度	0.1-0.2 (0.2)	ポアソン	0.06-0.09 (0.07)	ポアソン	
_	16-1	杂改长口子作	猿山沖区間	24	0	7.1程度	ほぼ0	BPT	0.6-0.6 (0.6)	ポアソン	
東	16-2	能登千岛北岸町 層帯	輪島沖区間	23	0	7.1程度	ほぼ0	BPT	0.6-0.6 (0.6)	ポアソン	
部	16-3		珠洲沖区間	47	0	7.6程度	ほぼ0	BPT	0.6-0.6 (0.6)	ポアソン	
	17	輪島は	るか沖断層	24	0	7.1程度	0.2-0.3 (0.3)	ポアソン	0.09-0.1 (0.1)	ポアソン	
	18	能登半島	晶北方沖断層	31	0	7.3程度	0.2-0.2 (0.2)	ポアソン	0.07-0.1 (0.08)	ポアソン	
	19-1	舳倉島近海断層	南西区間	41	Δ	7.5程度	0.1-0.1 (0.1)	ポアソン	0.05-0.05 (0.05)	ポアソン	
	19-2	市	北東区間	23	\triangle	7.1程度	0. 2–0. 2 (0. 2)	ポアソン	0.08-0.1 (0.09)	ポアソン	
	20-1	七尾湾東方断層	大泊鼻沖区間	25	Δ	7.2程度	0.5-0.6 (0.5)	ポアソン	0. 2–0. 2 (0. 2)	ポアソン	
	20-2	市	城ヶ崎沖区間	21	Δ	7.0程度	0.7-0.8 (0.7)	ポアソン	0.3-0.3 (0.3)	ポアソン	
	21	飯田海	脚南縁断層	31	0	7.3程度	0.1-0.1 (0.1)	ポアソン	0.04-0.04 (0.04)	ポアソン	
	22	富山トラ	うフ西縁断層	61	Δ	7.8程度	0.9-1 (1)	ポアソン	0.4-0.5 (0.4)	ポアソン	
	23	国田トラ	ヮフ横断断層	20	0	7.0程度	0.9-1 (1)	ポアソン	0.4-0.5 (0.4)	ボアソン	

表8 平均変位速度に応じて設定した活動度(松田, 1975)、及び平均活動間隔 などが不明な短い活断層で仮定した平均変位速度

平均変位速度(仮定値)(m/千年)	活動度
1.0以上10未満(仮定値はなし)	A級
0.1以上1未満(0.5)	B級
0.01以上0.1未満(0.05)	C級

地域 細分	長さ20 km未満の 活断層	想定する地震の 規模 ^{注18)}	1回のずれ量 (最大) ^{注8)}	平均活動間隔 (最小値) (千年)	平均活動間隔 (最大値) (千年)
	^{いざきみさき} 伊笹岬沖断層	6.8程度	約1m	30	30
	^{かすみ} 香住沖断層	6.8程度	約1m	5	14
	^{まんじゅう} 万十北断層	6.9程度	約2m	5	14
	^{うらしまぐり} 浦島礁南方断層	6.9程度	約2m	3	21
	^{うらしまぐり} 浦島礁北方南断層	6.8程度	約2m	6	52
四部	^{うらしまぐり} 浦島礁北方東断層	6.8程度	約1m	6	52
	美浜湾断層	7.0程度	約2m	3	21
	越前岬西方沖南断層	7.0程度	約2m	38	38
	越前岬西方沖中断層	6.9程度	約2m	34	34
-	ゲンタツ瀬南方断層	6.8程度	約1m	3	9
	ゲンタツ瀬南東断層	6.8程度	約1m	3	9
東	前ノ瀬南方断層	6.9程度	約2m	4	10
部	沖ノ瀬断層	6.8程度	約2m	14	21

表9-1 海域の短い活断層に対する仮定値

注8)については主文を、注18)については説明文を参照のこと。

海域の短い活断層		内容
	伊笹岬沖断層	断層に伴う背斜構造を伴わないことから横ずれ断層と判断し、基準層におけ る垂直変位量が0.01秒程度と小さく、長さも6km程度と短いことから、活動 度をC級と推定した。
	香住沖断層	背斜構造を伴い基準層における垂直変位量も0.1秒程度と推定されることか ら、右横ずれを伴う北西側隆起の逆断層であると判断し、比較的近くに分布 する同じ走向の経ヶ岬沖断層と同程度の平均活動間隔で活動すると推定し た。
	万十北断層	背斜構造を伴い基準層の垂直変位量も0.15秒程度と推定されることから、右 横ずれを伴う北西側隆起の逆断層と推定した。比較的近くに分布する経ヶ岬 沖断層と同程度の平均活動間隔で活動すると推定した。
	浦島礁南方断層	本断層のすぐ南側に位置し、ほぼ同じ走向と構造をもつ小浜沖断層と同程度 の平均活動間隔を持つ左横ずれ断層と推定した。
	浦島礁北方南断層	本断層のすぐ北側に位置し、ほぼ同じ走向と構造をもつ浦島礁北方北断層と 同程度の平均活動間隔を持つ左横ずれ断層と推定した。
西	浦島礁北方東断層	本断層の西方に位置し、ほぼ同じ構造をもつ浦島礁北方北断層と同程度の平 均活動間隔を持つ左横ずれ断層と推定した。
部	美浜湾断層	若狭湾内に分布する小浜沖断層とほぼ同じ走向と構造をもつことから、小浜 沖断層と同程度の平均活動間隔を持つ左横ずれ断層と推定した。
	越前岬西方沖南断層	北側に分布する越前岬西方沖北断層と平行で同じ構造をもつ断層であるが、 海底直下の地層中の変位量が小さいことから、C級の右横ずれ成分を持つ逆 断層と判断した。
	越前岬西方沖中断層	北側に分布する越前岬西方沖北断層と平行で同じ構造をもつ断層であるが、 海底直下の地層中の変位量が小さいことから、C級の右横ずれ成分を持つ逆 断層と判断した。
東部	ゲンタツ瀬南方断層	越前岬西方沖北断層とゲンタツ瀬・大グリ南東縁断層帯の間に位置し、それ らとほぼ直交する走向を持つ短い断層である。複数の平行な断層からなり、 基準層の垂直変位量も0.05秒前後に達し、それなりの活動度を持つと推定さ れる。隣接する越前岬西方沖北断層とゲンタツ瀬・大グリ南東縁断層帯の活 動と関係している可能性が考えられることから、これらのうち活動頻度の高 いゲンタツ瀬・大グリ南東縁断層帯(ゲンタツ瀬区間)と同程度の平均活動 間隔を持つと仮定した。
	ゲンタツ瀬南東断層	ゲンタツ瀬南方断層の東側に隣接し、構造及び変位量もよく似ていることか ら、平均活動間隔についてもゲンタツ瀬南方断層と同じとした。
	前ノ瀬南方断層	内灘沖断層の北方延長上に位置するが、逆傾斜であることから、独立した短 い逆断層とした。平均活動間隔は内灘沖断層と同じであると推定した。
	沖ノ瀬断層	前ノ瀬南方断層と沖ノ瀬東方断層の間に位置するが、断層の傾斜方向や構造 は沖ノ瀬東方断層と類似することから、沖ノ瀬東方断層と同じ平均活動間隔 を持つと推定した。

表10 評価対象海域における今後30年以内にM7.0以上の地震が発生する確率の比較 注17)については説明文を参照のこと。

G-R式	全域	西部	東部
95%信頼区間	30—40 %	9 — 30 %	20—30 %
(中央值) ^{注17)}	(40 %)	(18 %)	(30 %)
海域活断層帯	全域	西部	東部
95%信頼区間	16—18 %	4-6%	12—14 %
(中央値) ^{注17)}	(17 %)	(5%)	(13 %)

図 3-1 評価対象海域の主な反射法地震探査測線 地形はGEBCO Compilation Group (2023)による。

図 3-2 能登半島北岸海域のブーマー音源による探査測線 (産業技術総合研究所) 地形はGEBC0 Compilation Group (2023)による。

図 4 図 5 - 1 ならびに図 5 - 2 に示した反射断面の位置(紫色の線) それぞれの反射断面の位置に、反射断面図の記号 (a-w) と小番号 (1-3) を示した。 地形はGEBC0 Compilation Group (2023)による。

反射断面上部の紫色の横線は5km, 深度は往復走時(秒), 赤矢印は断層位置を示す. 図5-1 日本海中南部(西部区域)における評価対象の海域活断層(帯)の反射断面例

反射断面上部の紫色の横線は5km、深度は往復走時(秒)、赤矢印は断層位置を示す。

図5-1 日本海中南部(西部区域)における評価対象の海域活断層(帯)の反射断面例

反射断面上部の紫色の横線は5km、深度は往復走時(秒)、赤矢印は断層位置を示す。

反射断面上部の黒色の横線は1km、紫色の横線は5km、深度は往復走時(秒)、赤矢印は断層位置を示す。

反射断面上部の紫色の横線は5km、深度は往復走時(秒)、赤矢印は断層位置を示す。 図5-2 日本海中南部(東部区域)における評価対象の海域活断層(帯)の反射断面例

反射断面上部の紫色の横線は5km、深度は往復走時(秒)、赤矢印は断層位置を示す。

図5-2 日本海中南部(東部区域)における評価対象の海域活断層(帯)の反射断面例

図 6 日本海中南部及び周辺域の海底地形図と地名 地形はGEBCO Compilation Group (2023)による。

図7-1 日本海中南部及び周辺域の重力異常図 仮定密度 2.67g/cm³ によるブーゲー異常。データは産業技術総合研究所地質調査総合センター(2013)による。

図7-2 日本海中南部及び周辺域の重力異常図と海域活断層の位置

図8 評価対象海域及び周辺域の海洋地質図

玉木ほか(1981)、山本ほか(1989)、山本ほか(1993)、岡村ほか(1994)、山本ほか(2000)、岡村ほか(2002)、岡村ほか(2007)よ り作成。凡例は図幅により異なるが、地質図 Navi (https://gbank.gsj.jp/geonavi/) でそれぞれ閲覧可能である。

図9 1997年10月から 2024年12月の日本海中南部における深さ30 km 以浅の地震(M3.0以上)の 規模(マグニチュード)と規模別度数の経験式の回帰の結果(データは気象庁提供) 青四角は規模別度数、赤三角は累積値を表す。回帰には、評価対象海域内で発生したM3.0以上の地震(上図の緑丸)を用いた。 NはM3.0以上の地震の個数、bは回帰直線の傾きを表す。暫定値の震源を含む点に留意が必要である。

図10-1 日本海中南部及び周辺域で発生した浅い地震の発震機構(P波初動解、下半球投影) 1997年10月1日から2024年12月31日、深さ0から30 km、M≧3.0、データは気象庁提供。発震機構の色は、Frohlich (2001)による断層型別の分類に基づき、逆断層型を青色、正断層型を赤色、横ずれ断層型を緑色、混合型を灰色 で示した。 横ずれ断層型

図10-2 評価対象海域内で発生した地震の発震機構の分布 データは気象庁提供。期間等は図 10-1 と同じ。

図10-3 日本海中南部及び周辺域における地震の発震機構の圧力軸(上)と張力軸(下)の分布 黒線が圧力軸もしくは張力軸を示す。データは気象庁提供。期間等は図10-1と同じ。

図11 日本海中南部で発生したと考えられる主な歴史・被害地震 被害地震の位置(丸)と規模は気象庁(2025), 宇津(1979, 1990, 1999), 宇佐美ほか(2013)及び松浦・中村(2021)による。

図12 1729年享保能登の地震の震度分布図(地震予知総合研究振興会(2005)より作成)

図13 地震発生層の下限深さ

上図は地殻区分図(A:海洋地殻、B:厚い海洋地殻、C:背弧リフト、D:大 陸地殻)を示す。下図は日本海東部の地震発生層の下限深さの概念図(文部 科学省研究開発局・東京大学地震研究所, 2014)。

図14 海陸観測網による平成19年(2007年) 能登半島地震の余震活動分布(Sakai et al., 2008) 左図は、臨時観測点とテレメータ観測点のデータによる震源分布(2007年3月25日~4月18日)、右図は臨時観測点設置前の期間に 発生した地震をマスターイベント法により決定した震源分布(2007年3月25日9:00~17:00)。

図15 海陸観測網による2024年1月1日に石川県能登地方で発生したM7.6の地震の余震活動分布 (Shinohara et al., 2025)

領域を A1 ~ C6 の 15 領域(各領域の幅は 5 km、長さ 60 km)に分割し、それぞれの矩形領域内における余震分布の断 面図を表示してある。灰色は、日本海地震・津波調査プロジェクトによる断層モデルの上端位置を表す。

図16 日本海中南部及び周辺域に分布する活断層と三次元広域応力場(深さ 10 km) 三次元広域応力場はTerakawa and Matsu'ura (2010)による。

図17 日本海中南部における評価対象の海域活断層(帯)の平均変位速度

図18-1 評価対象海域及びその周辺で発生した浅い地震の発震機構(F-net、下半球投影) 1997年1月から2024年12月、深さ0から30 km、データは防災科学技術研究所による。発震機構の色は、 Frohlich (2001)による断層型別の分類に基づき、逆断層型を青色、正断層型を赤色、横ずれ断層型を緑色、 混合型を灰色で示した。

図19 評価対象の海域活断層(帯)の矩形断層モデル

上図:断層モデル(緑線)及び断層上端(黒線)の地表投影図。

下図:断層モデルを南側上空から見た鳥瞰図。断層面の角度によって断層面の明暗が異なる。

図中の数字はCDP番号を表す。

北西

W-3 : Depth section (V/H = 2)

図20-2 大深度マルチチャンネル反射法地震探査記録(W-3測線)における経ヶ岬沖断層 (文部科学省研究開発局・東京大学地震研究所, 2021)。縦横比は2:1。

W-1 : Depth section (V/H = 2)

図21 大深度マルチチャンネル反射法地震探査記録(W-1測線)におけるゲンタツ瀬・大グリ南東縁断 層帯(大グリ区間)(文部科学省研究開発局・東京大学地震研究所,2021)。測線位置については図 20-1参照。縦横比は2:1。

図22 BPT分布による最新活動からの経過年数と30年確率との関係 (青:平均活動間隔 1,500年、赤:平均活動間隔 2,000年、緑:平均活動間隔 3,000年)

図23 1919年1月から2024年12月までの106年間の日本海中南部における深さ30 km以浅の地震(M5.0以上)の 規模(マグニチュード)と規模別度数の経験式の回帰の結果(データは気象庁提供) 青四角は規模別度数、赤三角は累積値を表す。回帰には、評価対象海域内で発生したM5.0以上の地震(上図の緑丸)を用いた。NはM5.0以上 の地震の個数。回帰直線の傾き(b値)については図9で推定した値を用いた。暫定値の震源を含む点に留意が必要である。

(付録)

付録1 文章中の信頼度、幅などの表現について

個別の活断層(帯)の評価作業において各種のパラメータの相対的な信頼性は、「信頼度」 として記号で示されている。文章中では、各々のデータの信頼度に対応した文章表現を用い (付表1)、文章中もしくは表の特性欄では、パラメータのばらつきの大きさや推定の幅を、 以下の語句で表現している(地震調査研究推進本部地震調査委員会長期評価部会,2005, 2010)。

幅が大きい「概ね>程度>約>前後」幅が小さい

付録2 1回の地震に対応して活動する断層の長さの評価の考え方

活断層で発生する地震の規模の評価は、1回の地震に対応して活動しうる断層の長さに 基づく松田(1975)(本文の式(1))を用いている。活断層は、断層線の集まりが、走向 方向に連続して分布する構造を作ることが多い。このような多数の断層線から構成され、 ある程度の連続性が認められる構造全体を「断層帯」と呼ぶ(付図1(a))(活断層研究 会,1991)。近年に内陸で発生した大地震の例を見ると、大地震時に出現した地表地震断 層は、近接してまとまった複数の断層線からなっている。また、「断層帯」全体が1つの 地震を起こすのではなく、部分的な区間ごとに地震を起こしている例もある(付図1(b)、 (c))(松田, 1990)。すなわち、付図1(a)に模式的に示した「断層帯」で発生する地震のう ち、地震Aが発生した際には付図1(b) に示した赤色の断層線のみが活動し、その他の断 層線は活動しない。別の地震Bが発生した際には付図1(c)に示した赤色の断層線のみが活 動し、その他の断層線は活動しない。さらに、別の地震Cが発生した際には「断層帯」全 体が活動し、全体が地表地震断層として現れることもある(付図1(d))。このような例と して、2005年の福岡県西方沖の地震がある(地震調査研究推進本部地震調査委員会, 2007)。警固断層帯は、福岡市東区志賀島の北西沖の玄界灘から博多湾、福岡市中央区、 同市南区、春日市、大野城市、太宰府市を経て、筑紫野市に至る断層帯である。しかしな がら 2005 年の福岡県西方沖の地震の際に活動したのは、警固断層帯北西区間にあたる福 岡県西方沖の断層のみであり、警固断層帯全体が活動した訳ではない。

地震の規模の評価では、「断層帯」の中で複雑に分布している断層線を、1回の大地震 を起こす単位ごとにまとめる必要がある。1回の大地震で同時に活動すると想定されるひ とくくりの断層線(付図1の断層帯に該当し、ここでは「断層のくくり」と呼ぶ)のう ち、固有規模の地震を繰り返し発生させる最小の単位(付図1の地震Aや地震Bの活動範 囲に相当)を「評価単位区間」と呼ぶ(付図1(a))。断層帯を「評価単位区間」に分割す るにあたっては、断層線の屈曲や不連続、分岐形状、平均変位速度の分布様式、あるいは 地質構造・重力異常の情報等を参考にして判断することになっている(地震調査研究推進 本部地震調査委員会長期評価部会,2010)。

付録3 海域活断層の上下変位量の求め方

本評価における上下変位量の導出の基本的な考え方は説明文に記述したが、ここではよ り詳しい方法について記述する。上下変位量は産業技術総合研究所のシングルチャンネル の反射断面で読み取った。

時間断面上で読み取られた反射断面の上下変位量を、時間から深度に変換するために は、各層の音波速度が必要である。海底直下の中期更新統の地震波伝播速度は1550 m/s 以 下である可能性が高いと推定される(Expedition 346 Scientists, 2014)。海水中を伝わる音波 の伝播速度(1500 m/s)とこの速度の差異は上下変位量の読み取り誤差以下であるため、 今回速度補正は行わず、速度1500 m/s で全て深度変換した。また、反射探査時の音源とス トリーマーとの距離を考慮した斜補正を行わないと、上下変位量を過小評価してしまう。 斜補正については見かけの深度(Ds)と音源とストリーマー間の距離(今回用いた探査で は150 m)から以下の式で、真の深度(Dv)が計算できる。

 $D_v = \sqrt{D_s^2 - (150/2)^2}$ (A-1) この関係式から、変位を測定した層準深度が往復走時で 0.17~0.2 秒までは 1.2 倍、0.21~ 0.32 までは 1.1 倍、それ以深は補正なしとした。

断層に沿った変形構造は必ずしも単純な縦ずれだけでなく、背斜や地溝を伴うことが多い。背斜や地溝の幅が5km以下の場合は海底下浅部の変形であると見なし、背斜あるいは地溝の両側の同じ層準の深度差を上下変位量とした。地形の変形領域の幅が5kmを越える場合は、地下深部での断層運動の垂直成分を変形部全体が反映していると考え、背斜軸と低下側の層準の深度差を変位量とした。多くの背斜は幅が2km以下か5km以上であった。地溝は全て幅3km以下であった。

基準面として、中期更新世の地層(Q1層)の基底の変位を読み取っている。基準となる 堆積層を同定できない場合には、断層の位置・形態が似ている周辺の断層の平均変位速度を 仮定した。

付録4 日本近海で発生した地震による津波の最大津波高

本評価における海域活断層の評価基準を設定するため、近年に日本近海域で発生した地 震による津波の観測記録を確認した。付表2は、日本近海において発生した津波を伴った主 な地震について、マグニチュードと観測された最大津波高の関係を示したものである。これ から、1949年以降に発生した地震において、気象庁マグニチュードでM7.0未満の規模の地 震では、最大津波高が1mを超える津波が海岸で広く観測された事例はないことが分かる。 一方で、日本海側の地震は太平洋側の地震と比べて津波を大きく励起することが経験的に 知られており、同じ津波マグニチュード(Mt)でも日本海側では地震の規模であるモーメン トマグニチュード(Mw)が0.2程度小さくなることが示唆されている(Abe, 1985)。したが って、太平洋側で発生し津波を記録した地震が、仮に日本海側で発生した場合に、どの程度 の規模で同程度の津波が生じるのか確認するため、Abe(1985)に基づいた式(A-2)及び 式(A-3)からMt を介して日本海側で発生した地震と同じ規模になるようMwを換算し た。

 $Mt = Mw(Pacific) \qquad (A-2)$

- $Mt = Mw(Japan sea) + 0.2 \quad (A-3)$
- $Mw = (\log M_0 9.1) / 1.5$ (A-4)
- $\log(M_0) = 1.17M + 10.72$ (A-5)

 $Mw = 0.78M + 1.08 \qquad (A - 6)$

なお、本評価で用いるマグニチュードは Mw ではないため、M と Mw の変換に、武村 (1990) による M と地震モーメント (M₀) [Nm]の関係式 (A-5) 及び Kanamori (1977)に よる M₀ [Nm]と Mw の関係式 (A-4) から導いた式 (A-6) を用いた。式 (A-5) は本 来海溝型の地震や日本海東縁の地震を想定する場合には適さない (武村, 1990) ものの、本 検討では、これらの地震が、仮に本評価対象海域にある海域活断層で発生した場合を想定す るものであることから、以降の議論では式 (A-5) を用いて導出した式 (A-6) を用い ることとする。

付表2から、最大津波高が1m程度を記録した太平洋側の地震の中で Mw が小さい地震 は、例えば、101 cm の津波を記録した2004年の三重県南東沖の地震(Mw7.4)、98 cm の津 波を記録した2012年の三陸沖の地震(Mw7.2)、144 cm の津波を記録した2016年の福島県 沖の地震(Mw6.9)がある。この中で Mw が最小の地震は2016年の福島県沖の地震である。 この地震は太平洋側で発生した地震であるため、日本海側では地震の規模が0.2小さい Mw6.7 相当の地震においても、同規模の津波が記録されることが考えられる。式(A-6) で換算すると Mw6.7 は M7.2 程度の地震になり、この規模の地震であれば海岸で1mを超 える津波を観測する可能性があることになる。

一方で、付表2から、本評価の評価基準の地震の規模である M7.0 は、(A-6) により日本海側の地震では Mw6.5、太平洋側の地震では Mw6.7 に相当することになる。付表2から、この Mw 程度以下の地震では、最大津波高が1m を越えた地震はないことが分かる。以上から、評価基準となる M7.0 程度未満の規模の地震において海岸で高さ1m 程度以上の津波を広く観測した事例はない。

付録5 活断層の名称

活断層の名称について、活断層が複数の「評価単位区間」を含む場合には「○○断層 帯」、単一の「評価単位区間」で構成される場合には「○○断層」とした。「評価単位区 間」の名称については、「断層帯」が複数の「評価単位区間」を含む場合は、分割された それぞれの「評価単位区間」ごとに「△△区間」、「××区間」とした。評価対象の海域活断 層(帯)や海域の短い活断層の名称については、既往研究によって命名された断層名が存 在する場合には基本的にその名前を踏襲し、名称が存在しない断層に対しては海上保安庁 海洋情報部による「海底地形の名称に関する検討会(海上保安庁海洋情報部,2001)」で検 討された海底地形名称やその沿岸域における市区町村名等に基づいて命名した。ただし、 海底地名に対応する地形形状は不明瞭であることが多い。

付録6 広域応力場と断層形状から推定した断層すべり角の導出

断層のすべり角は断層の種類や、上下変位量から平均変位速度を推定するために必要な 情報である。断層のすべり角は、断層すべりの直接的な証拠である条線が断層露頭で確認さ れている場合、あるいは変動地形学的解析等から縦ずれ速度、横ずれ速度がいずれも見積も られる場合には推定可能である。しかしながら海域活断層の場合、断層露頭を確認すること は困難であり、また変位方向に関する情報に乏しい。そのため本評価では、断層の種類につ いては反射断面図から認定された海域活断層の構造的特徴(背斜構造等)及び背景となるテ クトニクスから推定した。この方法は評価対象海域にある断層の種類のおおよその傾向を 示しているが、個々の評価対象の海域活断層について正しく評価されていない可能性もあ る。そこで本評価では、断層の形状と広域応力場に基づいて断層面上の最大剪断応力方向を 計算し、Wallace-Bott 仮説(Wallace, 1951; Bott, 1959)に基づきその方向が断層すべり方向と 一致すると仮定して断層のすべり角を算出し、変動地質情報から推定した断層の種類と比 較することにより、その信頼度を設定している。

以下に、広域応力場と断層形状からすべり角を推定する方法について詳細を述べる。断層 面が起伏のない矩形形状を有するものと仮定した場合、断層の走向及び傾斜角から、断層面 における単位法線ベクトル n が求まる。その場における応力テンソルσが与えられると、 断層面における応力ベクトルtは両者の内積

 $\boldsymbol{t} = \boldsymbol{\sigma} \cdot \boldsymbol{n} \qquad (A-7)$

として与えられる。応力ベクトル t の断層面法線方向ベクトル t_n 及び剪断方向ベクトル t_s は それぞれ、

 $\boldsymbol{t_n} = (\boldsymbol{n} \cdot \boldsymbol{t})\boldsymbol{n} \qquad (A-8)$

 $\boldsymbol{t}_{\boldsymbol{s}} = \boldsymbol{t} - \boldsymbol{t}_{\boldsymbol{n}} = \boldsymbol{t} - (\boldsymbol{n} \cdot \boldsymbol{t})\boldsymbol{n} \qquad (A - 9)$

として与えられる。この応力ベクトルの剪断方向と断層の走向方向とのなす角を計算する ことで、断層のすべり角が求められる。

本評価の対象海域においては、F-net による地震のモーメントテンソルカタログに基づき Terakawa and Matsu'ura (2008)の手法により推定された日本島弧全域三次元広域応力場

(Terakawa and Matsu'ura, 2010)、及び本評価で推定した断層の走向・傾斜角に関する情報 を用い、断層のすべり角を算出した(付図2)。また、本手法の検証として、1943年鳥取 地震、平成19年(2007年)能登半島地震(M6.9)及び平成19年(2007年)新潟県中越 沖地震を対象として本手法によって推定された断層のすべり角と、地震波形インバージョ ン等によって推定されたすべり角を比較した。その結果、地震波形インバージョンによっ て推定された断層すべり角との相違はいずれの地震に対しても20°程度以内に収まること が分かった。また、F-netメカニズム解等を対象に本手法を検証した結果、平成23年

(2011年)東北地方太平洋沖地震の震源域等を除き、メカニズム解の断層すべり角と算出 された断層すべり角の相違が概ね 30°程度以内に収まることが示されている(Ishibe et al., 2024)。本手法で推定した断層すべり角ならびにそれらから推定される断層のずれの向き と種類は、背景テクトニクスから推定した断層の種類の信頼度の付与に用いることとし た。

付録7 評価対象海域における地震の発生確率の算出についての補足

7-1 海底下浅部で痕跡を認めにくい地震の発生間隔の計算方法

活断層の長期評価手法において、過去に発生した被害地震では、明瞭な地表地震断層を 伴わなかった地震も知られているため、各評価単位区間について地表で痕跡を認めにくい 地震の発生を考慮することとなっている。その際、地表で痕跡を認めにくい地震は、最大 で各評価単位区間で地下の断層の長さから想定される地震と同一規模、最小で M6.8 の地 震が発生する可能性があるとし、対象となる評価単位区間で得られている平均活動間隔の 2倍の間隔で発生しているとみなし、断層内のどこでも発生する可能性があると考え、ポ アソン過程により地震発生確率を算出することとしている。地表で痕跡を認めにくい地震 の「発生間隔」の算出の根拠は、19世紀以降に主要活断層帯で発生した M6.8 以上の地震 のうち、明瞭な地表地震断層を伴った地震が8、伴わなかった地震が4であったという経 験的な発生比率に基づく(地震調査研究推進本部地震調査委員会長期評価部会,2010)。

本評価でも、地表で痕跡を認めにくい地震と同様に、海域活断層において海底下浅部で 痕跡を認めにくい地震が発生する可能性を考慮する。ただし、本評価では M7.0 以上の地 震が発生する確率を評価するため、海底下浅部で痕跡を認めにくい地震についても、M7.0 以上の地震の発生間隔を検討する必要がある。活断層の長期評価手法における上述の 19 世紀以降に主要活断層帯で発生した M6.8 以上の地震のうち、M7.0 以上の地震を抽出する と、明瞭な地表地震断層を伴った地震が7、伴わなかった地震が3となる。そのため、 M7.0 以上の海底下浅部で痕跡を認めにくい地震の発生間隔は、対象となる評価単位区間で 得られている平均活動間隔の7/3倍とみなすこととした。

一方で、活断層の長期評価手法では、規模の評価に幅がある場合、各規模の地震の相対 発生頻度は、G-R式に従うものとして算出することとしている(地震調査研究推進本部 地震調査委員会長期評価部会、2010)。そこで、G-R式に基づいてM7.0以上の地震発生数 とM6.8以上の地震発生数の比率から、M7.0以上の海底下浅部で痕跡を認めにくい地震の 発生間隔を換算する方法も検討した。この方法はG-R式に基づくため、適切にb値を定 める必要がある。しかしながら、本評価対象海域においては、地震活動の分布に偏りがあ り適切なb値を求めることが困難である。そのため、本評価ではG-R式に基づいた手法 を用いていない。

なお、地表に断層が現れる地震の規模の最小値は、地下で大きなすべりが発生している 場所(アスペリティ)の深さやすべり量の大きさ、あるいは地表付近の堆積層の厚さなど によって様々であり、海底下浅部で痕跡を認めにくい地震の規模が地域ごとに異なる可能 性が考えられるため、本手法は今後の調査研究の進展を踏まえて更に検討されるべきもの である。

7-2 評価対象海域の地震の発生確率の幅の統計的扱い

活断層の地震発生確率は、平均活動間隔と最新活動時期によって求めることができる (地震調査推進本部地震調査委員会,2001)。ただし、本評価の海域活断層では、平均活 動間隔は推定幅を伴い、それに基づいて算出される地震発生確率も幅を持つ。全ての活断 層において平均活動間隔が幅の最大値を取ると確率値は最小になり、その逆の場合には確 率値は最大となる。各海域活断層についての平均活動間隔の推定幅を考慮した上で活断層 の地震発生確率 $P_k(Y > y;t)$ 及び区域全体の地震発生確率 P(Y > y;t)を評価するために、こ こでは計算機で乱数を発生させる方法(モンテカルロ法)を採用した。具体的な手順は次 のとおりである(付図3)。

(i)本評価対象海域に分布する海域活断層について、それぞれ平均活動間隔の推定幅に 基づいて一様分布を仮定して乱数を発生させ、平均活動間隔の具体的な値を与える。

- (ii)本評価では、2024年1月1日に発生した M7.6の地震で活動した能登半島北岸断層 帯を除く海域活断層の最新活動時期は不明である。そのため、(i)で与えられた平 均活動間隔をもとにポアソン過程を仮定した式(6)により地震発生確率 *P_k*を計算す る。一方で、能登半島北岸断層帯に対しては最新活動時期を 2024年1月1日とし て、活動間隔のばらつきのパラメータ α = 0.24 とし、BPT (Brownian Passage Time)分布 を適用する。
- (iii)(ii)による海域活断層の地震発生確率を式(7)に適用し、評価区域での確率 *P* を求める。
- (iv) (i) (iii)の操作を一回の試行とし、同様にして 10 万回の試行を繰り返す。
- (v)以上により、評価区域における地震の発生確率 P の相対度数分布を求め、区域全体の地震の発生確率の代表値として、相対度数分布の中央値及びその 95% 信頼区間を用いる。

本評価における平均活動間隔は、断層すべり角から算出される横ずれ/縦ずれ比の分布 や基準面の堆積年代等の幅から、幅をもって推定された平均変位速度から式(5)により求 めている。なお、「四国地域の活断層の長期評価(第一版)」(地震調査研究推進本部地震調 査委員会,2017)や日本海南西部の長期評価に準じて、本評価では平均活動間隔の幅につい ては一様分布を仮定した。

付録8 多様な地震発生確率の試算方法

8-1 評価対象海域の海域活断層のいずれかを震源としてM6.8以上の地震が発生する確 率の計算方法

評価対象海域の海域活断層のいずれかを震源として M6.8 以上の地震が発生する確率の計算には、断層長さが 20 km 程度以上の評価対象の海域活断層(帯)に加え、海域の短い活断層が活動する場合も考慮する必要がある。海域の短い活断層が活動する場合の地震の規模については、断層長さ(表2)から式(1)を用いて推定した。ただし、断層長さ15 km 未満の海域の短い活断層については、活断層の長期評価手法に基づき、最低限考慮すべき地震の規模として M6.8 を設定した(注18)。

日本海南西部の長期評価では、短い活断層は断層長さが周辺の評価対象の海域活断層(帯) より短いことを考慮し、平均変位速度は評価対象の海域活断層(帯)以下と考え、活動度 C 級を仮定していた。しかしながら、本評価対象海域における海域の短い活断層は基準層に明 瞭な変位が認められる場合があり、C級とすると過小評価する可能性がある。そのため、周 辺の似たずれの向きと種類の断層の平均活動間隔を仮定した。表9-1に海域の短い活断 層に対する仮定値を、表9-2に仮定した活動度ならびに平均活動間隔の根拠をそれぞれ 示す。一方で、基準層の断層変位が不明瞭な場合には、活動度 C 級に対応する仮定値であ る 0.05 m/千年(表8)を採用し、式(4)により断層長さから一回のずれ量を求め、式(5) により平均活動間隔を推定した(表9-1)。

いずれの海域の短い活断層に対しても最新活動時期が不明なため、能登半島北岸断層帯 を除く評価対象の海域活断層(帯)と同様に、式(6)、(7)により評価対象海域の海域活 断層のいずれかを震源として M6.8 以上の地震が発生する確率を計算した。この時、海域の 短い活断層においても海底下浅部で痕跡を認めにくい地震が発生する可能性を考慮し、確 率評価に含めた。

8-2 活断層を特定しない地震発生の確率評価の計算の詳細

活断層を特定せずにある地域で発生する地震の確率は、地震のマグニチュードと規模別 頻度との間の経験式(グーテンベルク・リヒターの式、「G-R 式」(Gutenberg and Richter, 1944)に基づき推定することができる。本評価対象海域においては地震活動が低調であり、 精度の高いパラメータ推定が困難ではあるが、G-R 式に基づく地震発生の確率値は、ある 領域の活断層が活動することによる地震の発生確率とは異なったデータや条件で推定して いるため、これらの結果を比較することも重要である。本評価では、活断層を特定しない地 震の確率評価による今後 30 年以内に M7.0 以上の地震が発生する確率についても、参考の ために試算することとした。

具体的な手順は次のとおりである。

- (i) 全期間 T (年間) の震源カタログを用いて規模別頻度分布を求め、G-R 式にフィ ッティングする。
- (ii)得られた G-R 式を用いて、ターゲットとするマグニチュード Mc を超える地震数 Nc を求める。
- (iii) 地震1個あたりの年数(活動間隔) Tr(年間/個)を、Tr=T/Ncで計算する。
- (iv) ポアソン過程のモデル $P(\Delta T) = 1 \exp(-\Delta T/Tr)$ に基づいて 30 年確率 P(30) を求める。

本評価では、*Mc*=7.0 とし、1919 年1月から 2024 年 12 月までの 106 年間の気象庁震源 カタログから得られる M5.0 以上の地震を用い、*Nc* 及び *Tr*、そして *P(30)* を試算し、表 10 に記載した。なお、過程(i)において、1919 年1月から 2024 年 12 月までの 106 年間に 本評価対象海域において観測された M5.0 以上の地震発生個数は限られるため、安定した b 値を推定することができない。そこで b 値の推定には、陸域の観測網が充実した 1997 年 10 月から 2024 年 12 月までに発生した M3.0 以上の地震(注 15) から求めた。

付録9 評価対象としなかった構造

今回、評価対象海域において M7.0 以上の地震を起こす可能性のある活断層を全て評価 することを目指して、海域活断層の分布に関する反射断面、既存資料や地質構造、重力異 常、海底地形図等を精査し、活断層としての証拠が揃っているものを選定して評価した。 ここでは、結果として評価対象から外した構造(付図4の青線)について記す。付表3-1は、活断層の可能性があるものの、少なくとも現時点で活断層としての証拠が揃ってい ないことから評価から外した構造である。付表3-2は、日本海における大規模地震に関 する調査検討会(2014)や、「日本海地震・津波調査プロジェクト」(文部科学省研究開発 局・東京大学地震研究所,2021)、Ishiyama et al. (2017a, 2017b)、ならびに既存文献等で海域 活断層と指摘されているもののうち、検討の結果、活断層の可能性が低いと判断したもの である。

信頼度		文末表現
Ô	:高い	考えられる。
\bigcirc	:中程度	推定される。
\bigtriangleup	:低い	可能性がある。
	: かなり低い	可能性もある。

付表1 各種パラメータの相対的な信頼度

付表2 日本近海で発生した津波を伴った主な地震表

気象庁「令和2年12月地震・火山月報(防災編)」日本で津波を観測した回数の元となった情報等から、1949年以降で最大波高が30cm以上となった日本近 海で発生した地震リスト。M_{MM}は月報作成時の情報である。MwはInternational Seismological Centre (2023), Di Giacomo et al. (2015, 2018) による。

	雷古地名	(名称)	検潮所における	м	M _w
年月日	晨 央地名		取大の洋波尚 (cm)	M _{JMA}	(ISC- GEM)
2011/03/11	三陸沖	(平成23年(2011年)東北地方太平洋沖地震)	930	9.0	9.1
1968/05/16	三陸沖	(1968年十勝沖地震)	295	7.9	8.2
1973/06/17	根室半島南東沖	(1973年6月17日根室半島沖地震)	280	7.4	7.8
2003/09/26	十勝沖	(平成15年(2003年)十勝沖地震)	255	8.0	8.3
1983/05/26	秋田県沖	(昭和58年(1983年)日本海中部地震)	194	7.7	7.7
1993/07/12	北海道南西沖	(平成5年(1993年)北海道南西沖地震)	175	7.8	7.7
1994/10/04	北海道東方沖	(平成6年(1994年)北海道東方沖地震)	168	8.2	8.3
2016/11/22	福島県沖		144	7.4	6.9
1964/06/16	新潟県沖	(新潟地震)	140	7.5	7.6
1969/08/12	北海道東方沖		130	7.8	8.2
1968/04/01	日向灘	(1968年日向灘地震)	116	7.5	7.5
2004/09/05	三重県南東沖		101	7.4	7.4
1952/03/04	釧路沖		100	8.2	8.1
2012/12/07	三陸沖		98	7.3	7.2
1975/06/10	北海道東方沖		95	7.0	7.5
2006/11/15	千島列島東方		84	7.9	8.3
1958/11/07	択捉島付近		81	8.1	8.4
2024/01/01	石川県能登地方	(令和6年(2024年)能登半島地震)	80	7.6	-
1968/06/12	岩手県沖		78	7.2	7.0
1982/03/21	浦河沖	(昭和57年(1982年)浦河沖地震)	78	7.1	6.9
1963/10/13	択捉島付近		74	8.1	8.5
2004/09/05	三重県南東沖		66	7.1	7.2
1973/06/24	根室半島南東沖		65	7.1	7.3
1978/06/12	宮城県沖	(1978年宮城県沖地震)	60	7.4	7.6
2015/05/03	鳥島近海		60	5.9	5.7
1968/05/16	青森県東方沖		57	7.5	7.9
2011/03/09	三陸沖		55	7.3	7.3
1989/11/02	岩手県沖		53	7.1	7.4
1971/08/02	十勝沖		51	7.0	7.1
1961/02/27	日向灘		50	7.0	7.5
1994/12/28	三陸沖	(平成6年(1994年)三陸はるか沖地震)	50	7.6	7.7
2010/12/22	父島近海		50	7.8	7.4
1953/11/26	房総半島南東沖		48	7.4	7.9
1959/01/22	福島県沖		45	6.8	7.0
1995/10/18	奄美大島近海		43	6.6	7.1
2007/01/13	千島列島東方		43	8.2	8.1
1983/06/21	青森県西方沖		42	7.1	6.8
2005/11/15	三陸沖		42	7.2	7.0
1960/03/21	三陸沖		40	7.2	8.0
2005/01/19	関東東方沖		39	6.8	6.6
1963/10/20	択捉島付近		36	6.7	7.8
2009/08/11	駿河湾		36	6.5	6.3
2013/10/26	福島県沖		36	7.1	7.1
1972/12/04	八丈島東方沖	(1972年12月4日八丈島東方沖地震)	35	7.2	7.4
1978/01/14	伊豆大島近海	(1978年伊豆大島近海の地震)	35	7.0	6.7
1995/01/17	淡路島付近	(平成7年(1995年)兵庫県南部地震)	34	7.3	6.9
2003/10/31	宮城県沖		34	6.8	7.0
1970/07/26	日向灘		32	6.7	7.0
1978/03/25			32	7.3	7.5
2007/07/16	新潟県上中越沖	(半成19年(2007年)新潟県中越沖地震)	32*1	6.8	6.6
1980/06/29	伊豆半島東方沖		31	6.7	6.4
2022/03/16	福島県沖		31	7.4	-
1986/11/15	台湾付近		30	7.8 ^{**2}	7.4
2015/11/14	隆摩半島西方沖		30	7.1	6.8
2018/05/06	鳥島近海		30	5.7	5.4

※1 新潟県の柏崎港では1mの津波が観測されたが、これは震源域に近く、津波のエネルギーが集中し、局所的に大きな津波となった可能性がある。
※2 The United States Geological Survey (USGS) による

付表3-1 活断層の可能性のある構造

構造の名称	内容
(付図4の記号)	
隠岐トラフ中部	隠岐トラフの北東部と南西部を分ける北東側低下の構造的な段差であ
(P1)	る。トラフ形成時の古い構造である可能性が高いが、段差を覆う地層が
	傾斜していることから、可能性のある構造とした。
若狭海丘列北縁中	若狭海丘列の大規模な北側斜面基部に相当する線で、日本海における大
(P2)	規模地震に関する調査検討会(2014)で震源断層(F49)と判断され、
	「海域における断層情報総合評価プロジェクト」(文部科学省研究開発
	局・海洋研究開発機構,2020)及び「日本海地震・津波調査プロジェク
	ト」(文部科学省研究開発局・東京大学地震研究所,2021) でも, その一
	部を震源断層と認定された。斜面基部を覆う地層の形状を検討し、活断
	層である可能性を否定できない南西部のみを、若狭海丘列北縁断層とし
	て評価した。その他の部分は堆積物の圧密で説明可能と判断したが、活
	断層と連続的であることを考慮した。
若狭海丘列北縁北	若狭海丘列の北東端縁に形成されている東西方向の急斜面の基部に相当
(P3)	する線で、日本海における大規模地震に関する調査検討会(2014)に活
	断層(F49)として記載されている。急斜面基部の隠岐トラフを覆う堆積
	物の形状から、最近の断層活動は止まっている可能性が高いと判断した
	が、若狭海丘列北縁中(P2)とよく似た規模の大斜面であることを考慮
	した。
西能登堆群西方	西能登堆群の西方に形成されている東西方向の急斜面の基部に相当する
(P4)	線で、日本海における大規模地震に関する調査検討会(2014)に活断層
	(F48)として記載されている。急斜面基部の隠岐トラフを覆う堆積物の
	形状から、最近の断層活動は止まっている可能性が高いと判断したが、
	隠岐舟状海盆中北部(P2)とよく似た規模の大斜面であることを考慮し
	<i>t</i> =。
飯田海脚北東	能登半島東方海底地質図(岡村ほか,2002)に示された中新世の褶曲構造
(P5)	に相当し、「海域における断層情報総合評価プロジェクト」(文部科学省
	研究開発局・海洋研究開発機構,2020)で断層として示された。断層を覆
	う地層の形状を検討し、褶曲構造は鮮新世には成長が止まっている可能
	性が高いと判断したが、東方延長上に活断層(上越海丘)が形成されて
	いることを考慮した。

付表3-2 活断層の可能性の低い構造

地域	内容
(付図4の記号)	
隠岐海嶺南縁	隠岐海嶺南縁の直線状の急斜面。「海域における断層情報総合評価
(L1)	プロジェクト」(文部科学省研究開発局・海洋研究開発機構,
	2020)によって断層と認定され、「日本海地震・津波調査プロジェ
	クト」(文部科学省研究開発局・東京大学地震研究所, 2021) によ
	って震源断層と認定された。日本海形成時に形成された基盤の高
	まりである隠岐海嶺と沈降帯の隠岐トラフの境界である正断層が
	崖を形成しているが、それを覆う堆積層に活断層らしい構造は確
	認できなかった。
若狭海丘列北縁南	若狭海丘列北側の急傾斜部の基部に相当する線。日本海における
(L2)	大規模地震に関する調査検討会(2014)で震源断層と判断され、
	「海域における断層情報総合評価プロジェクト」(文部科学省研究
	開発局・海洋研究開発機構,2020)及び「日本海地震・津波調査プ
	ロジェクト」(文部科学省研究開発局・東京大学地震研究所,
	2021)でも、震源断層と認定された。急斜面を横断する反射断面
	を検討し、その斜面基部を覆う地層には明瞭な変形が認められな
	かった。急斜面基部より北側の緩斜面基部の地層に新しい変形が
	認められた部分のみ、若狭海丘列北縁断層として評価している。

付図1 断層帯の評価単位区間の模式図

付図3 評価対象の海域活断層で発生する地震の発生確率値の評価方法

可能性のある構造

P1:隠岐トラフ中部

P2:若狭海丘列北縁中

- P3:若狭海丘列北縁北
- P4:西能登堆群西方
- P5:飯田海脚北東

- 可能性の低い構造
- L1:隠岐海嶺南縁
- L2:若狭海丘列北縁南

付図4 活断層の可能性のある構造、活断層の可能性の低い構造 地形は GEBCO Compilation Group (2023) による。