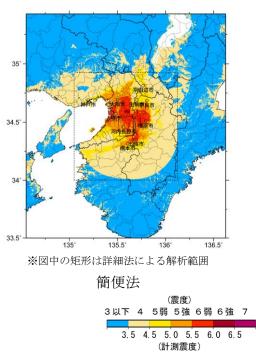
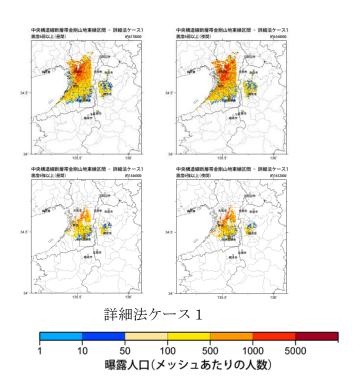

震源断層を特定した地震動予測地図(シナリオ地震動予測地図) 中央構造線断層帯金剛山地東縁区間

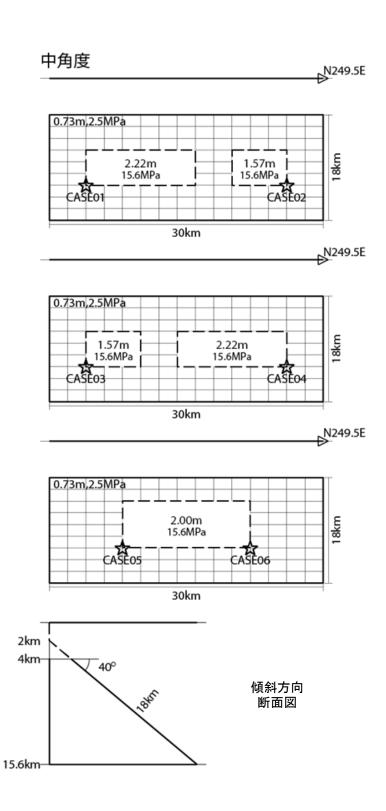
強震動予測のための震源パラメータ (2018 年版提示モデル)


巨視的震源パラメータ	
断層長さ L [km]	16
地震規模 M	6.8
地震発生層上限深さ H_{s} [km]	2
地震発生層下限深さ $H_{ m d}$ [km]	15
設定手順	(イ)
地震モーメント M ₀ [Nm]	5.28E+18
モーメントマグニチュード <i>M</i> w	6.4
断層モデル面積 $S_{ m model}$ $[{ m km}^2]$	324
静的応力降下量 $\Delta\sigma$ [MPa]	2.2
平均すべり量 D [m]	0.52
走向 θ [度]	176.8
傾斜角 δ [度]	40
すべり角λ[度]	180
断層モデル原点緯度 [°N]	34.5491
断層モデル原点経度 [°E]	135.6597
断層モデル上端深さ $D_{ m top}$ [km]	2
断層モデル長さ $L_{ m model}$ [km]	18
断層モデル幅 $W_{ m model}$ [km]	18
微視的震源パラメータ	
短周期レベル A [Nm/s²]	9.23E+18
短周期レベル(参照) A _{Dan} [Nm/s²]	9.23E+18
全 面積 S _a [km ²]	40.3
テァ 実効応力 σ _a [MPa]	17.7
イ ペ すべり量 <i>D</i> a [m]	1.05
リ 地震モーメント M _{0a} [Nm]	1.32E+18
ア 面積 S_{al} [km ²]	40.3
ス 実効応力 σ_{a1} [MPa]	17.7
1 プ すべり量 D a1 [m]	1.05
テ 地震モーメント M _{0a1} [Nm]	1.32E+18
イ 計算用面積 [km×km]	6 × 6
ア 面積 S _{a2} [km ²]	_
ス 実効応力 σ _{a2} [MPa]	_
2 ^ペ リ すべり量 D _{a2} [m]	_
ァ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	_
イ 計算用面積 [km×km]	
背 面積 S _b [km ²]	283.7
景 実効応力 σ_b [MPa]	2.5
領 すべり量 D_b [m]	0.45
域 地震モーメント M_{0b} [Nm]	3.97E+18

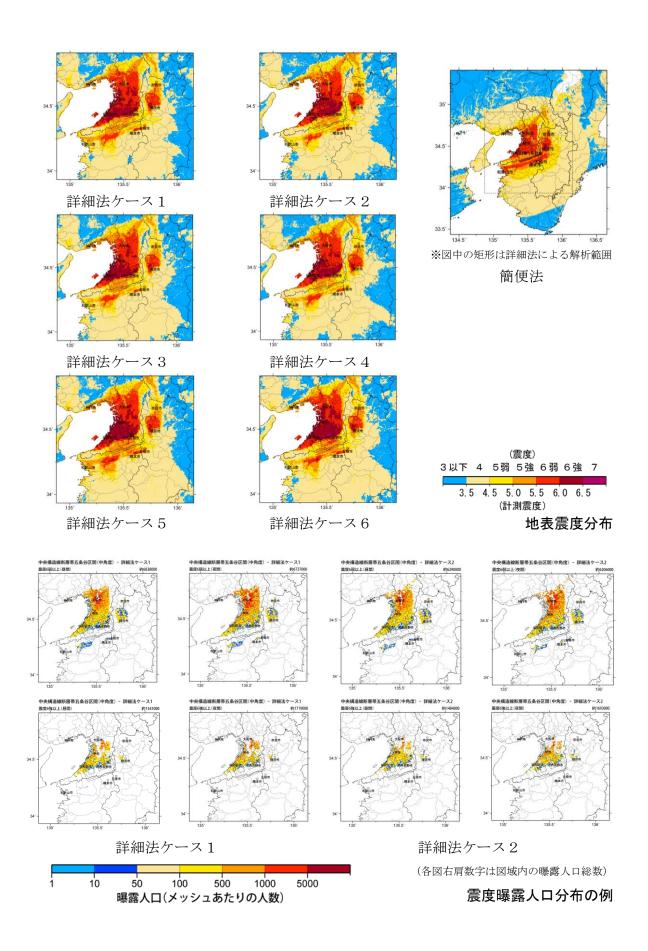


詳細法ケース1

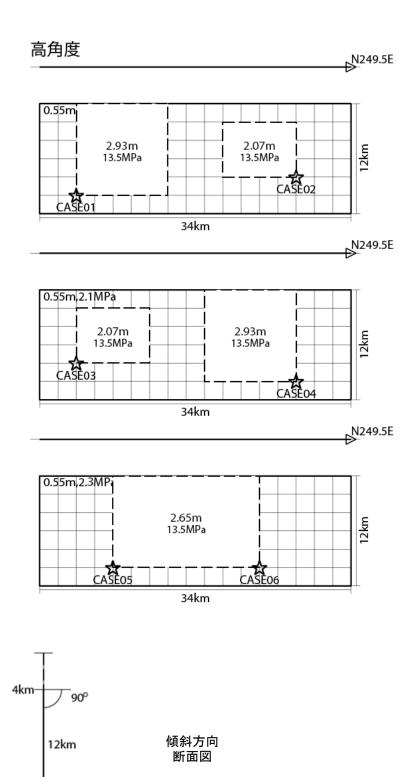
地表震度分布


(各図右肩数字は図域内の曝露人口総数)

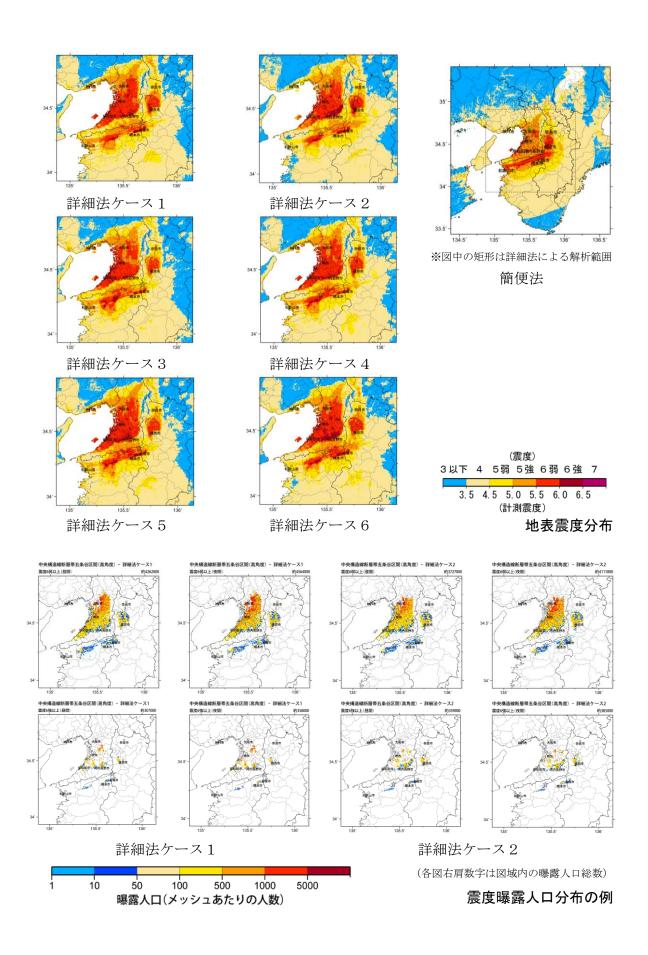
震度曝露人口分布の例


震源断層を特定した地震動予測地図(シナリオ地震動予測地図) 中央構造線断層帯五条谷区間

強震動予測のための震源パラメータ (2018 年版提示モデル)


巨視的震源パラメータ	中角	角度	高角度		
断層長さ <i>L</i> [km]	29 29				
地震規模 M	7.	7.3			
地震発生層上限深さ H_{s} [km]	4	1		4	
地震発生層下限深さ H_{d} [km]	1	5		15	
設定手順	(~	了)	(-	了)	(イ)
地震モーメント M_0 [Nm]	1.691	E+19	1.691	E+19	1.69E+19
モーメントマグニチュード $M_{ m w}$	6				6.8
断層モデル面積 $S_{ m model}$ [km 2]	54	10	40	08	408
静的応力降下量 $\Delta \sigma$ [MPa]	3.	.3	5	.0	3.1
平均すべり量 <i>D</i> [m]	1.	00	1.	32	1.32
走向 θ [度]	24	9.5	24	9.5	249.5
傾斜角 δ [度]	4	0	9	0	90
すべり角 λ [度]	18	30	18	30	180
断層モデル原点緯度 [°N]	34.4	101	34.3	3962	34.3962
断層モデル原点経度 [°E]	135.	6928	135.	7222	135.7222
断層モデル上端深さ $D_{top}\left[km ight]$	4	1	4	4	
断層モデル長さ L_{model} [km]	3	0	3	34	
断層モデル幅 $W_{ m model}$ [km]	1	8	1	2	12
微視的震源パラメータ					
短周期レベルA [Nm/s²]	1.36E+19 1.36E+1		E+19	1.09E+19	
短周期レベル(参照) A _{Dan} [Nm/s²]	1.361	E+19	1.36	E+19	1.36E+19
11 全 面積 Sa [km²]	113	3.6	15	0.3	89.8
$\frac{9}{5}$ ア 実効応力 σ_a [MPa]	15	5.6	13	3.5	14.1
$[a, b]$ すべり量 $D_a[m]$	2.	00	2.65		2.65
へ 地震モーメント M _{0a} [Nm]	7.091	E +18	1.24E+19		7.42E+18
ア 面積 $S_{\rm al}$ [km ²]	75.7	113.6	100.2	150.3	59.8
ス 実効応力 σ _{a1} [MPa]	15.6	15.6	13.5	13.5	14.1
l l l j つり重 D al [m]	2.22	2.00	2.93	2.65	2.93
テ 地震モーメント M _{0a1} [Nm]	5.24E+18	7.09E+18	9.17E+18	1.24E+19	5.48E+18
イ 計算用面積 [km×km]	12 × 6	14 × 8	10 × 10	16 × 10	10 × 6
ア 面積 S_{a2} [km ²]	37.9 —		50.1	_	29.9
ス 実効応力 σ _{a2} [MPa]	15.6 —		13.5		14.1
2 _リ すべり量 <i>D</i> _{a2} [m]	1.57 —		2.07 —		2.07
テ 地震モーメント M_{0a2} [Nm]	1.85E+18 —		3.24E+18 —		1.94E+18
イ 計算用面積 [km×km]	6 × 6 —		— 8 × 6 —		8 × 4
背 面積 S _b [km ²]	426.4 426.4		257.7	257.7	318.2
景 実効応力 σ_b [MPa]	2.5	2.5	2.1	2.3	2.9
領 すべり量 D_b [m]	0.73	0.73	0.55	0.55	0.95
域 地震モーメント M_{0b} [Nm]	9.76E+18	9.76E+18	4.44E+18	4.44E+18	9.44E+18

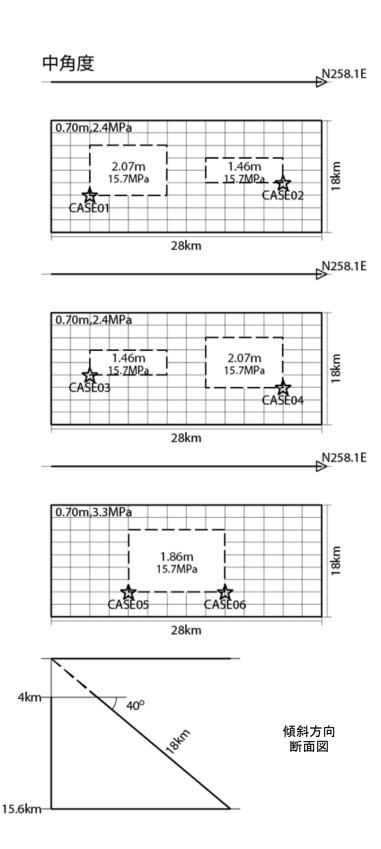
アスペリティと破壊開始点の配置図



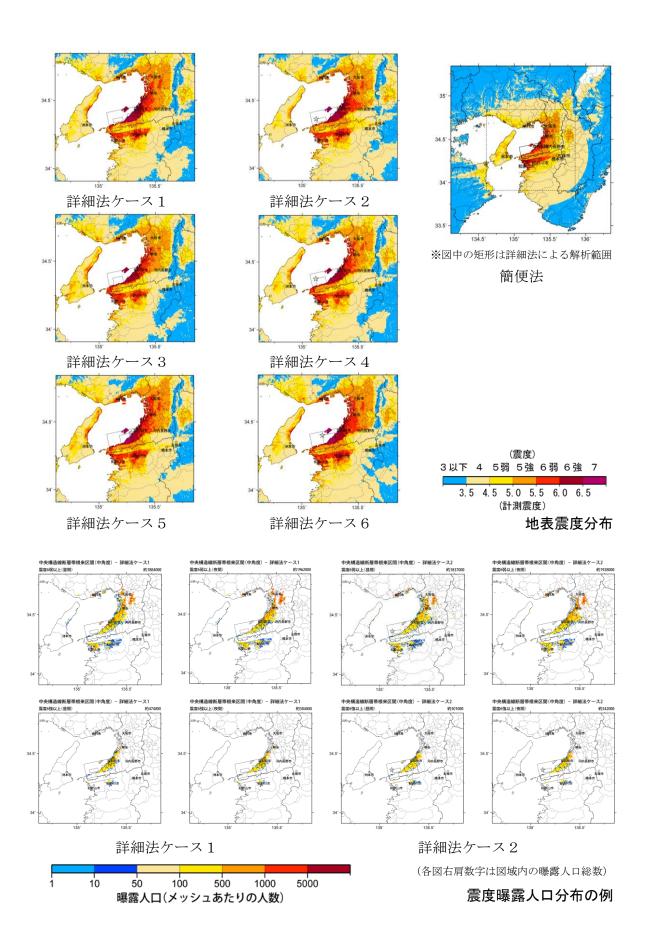
中央構造線断層帯五条谷区間【中角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

アスペリティと破壊開始点の配置図

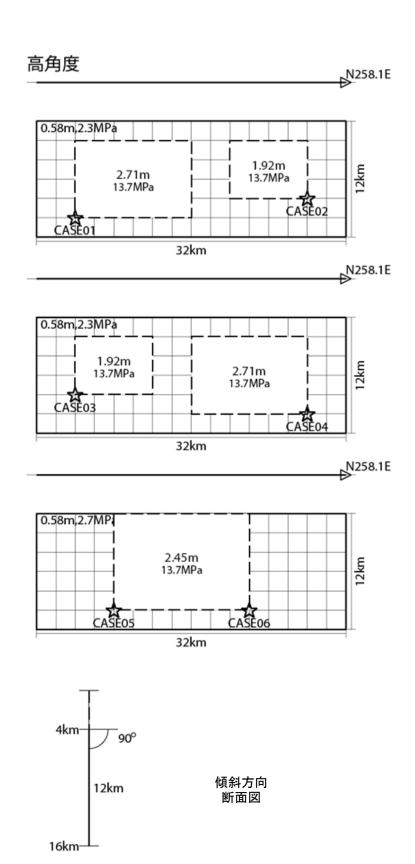
16km-

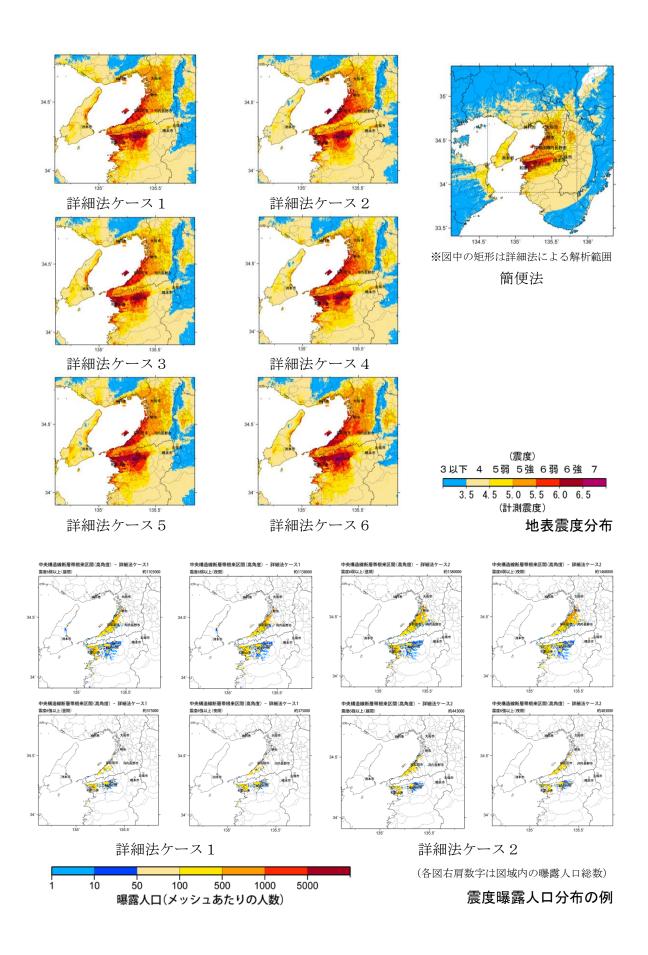


中央構造線断層帯五条谷区間【高角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)


震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 中央構造線断層帯根来区間

強震動予測のための震源パラメータ (2018 年版提示モデル)

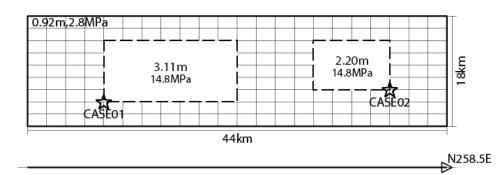

巨視的震源パラメータ	中角度高角度					
断層長さ L [km]	2	7				
地震規模 M	7.2			7.2	7.2	
地震発生層上限深さ H_{s} [km]	4	1		4		
地震発生層下限深さ $H_{ m d}$ [km]	1	5		15		
設定手順	(/	了)	(-	亻)	(イ)	
地震モーメント M_0 [Nm]	1.471	E+19	1.47	E+19	1.47E+19	
モーメントマグニチュード $M_{ m w}$	6	.7	6	.7	6.7	
断層モデル面積 $S_{ m model}$ [km 2]	50)4	38	84	384	
静的応力降下量 $\Delta \sigma$ [MPa]	3.	.2	4	.7	3.1	
平均すべり量 <i>D</i> [m]	0.	93	1.	22	1.22	
走向 θ [度]	25	8.1	25	8.1	258.1	
傾斜角 δ [度]	4	0	9	0	90	
すべり角 λ [度]	18	30	18	80	180	
断層モデル原点緯度 [°N]	34.3	398	34.3	3015	34.3015	
断層モデル原点経度 [°E]	135.	3973	135.	4292	135.4292	
断層モデル上端深さ $D_{top}\left[km ight]$	4	4	4	4		
断層モデル長さ L_{model} [km]	2	8	3	32		
断層モデル幅 $W_{ m model}$ [km]	1	8	1	2	12	
微視的震源パラメータ						
短周期レベルA [Nm/s²]	1.301	E+19	1.30	E+19	1.06E+19	
短周期レベル(参照) A _{Dan} [Nm/s ²]	1.301	E+19	1.30	E+19	1.30E+19	
11全面積Sa[km²]	10	1.0	13	2.6	84.5	
\mathcal{F} ア 実効応力 σ_a [MPa]		5.7		3.7	14.1	
ィヘ すべり量 D_a [m]		86	2.45		2.45	
地震セーメント M_{0a} [Nm]		E+18			6.45E+18	
ア 面積 $S_{\rm al}$ [km ²]	67.4	101.0	88.4	132.6	56.3	
ス 実効応力 σ _{al} [MPa]	15.7	15.7	13.7	13.7	14.1	
$\begin{bmatrix} 1 \end{bmatrix}$ 「すべり 量 D_{al} [m]	2.07	1.86	2.71	2.45	2.71	
テ 地震モーメント M_{0a1} [Nm]					4.77E+18	
イ 計算用面積 [km×km]	8 × 8 10 × 10			14 × 10		
ア 面積 S_{a2} [km ²]	33.7	_	44.2	_	28.2	
ス 実効応力 σ _{a2} [MPa]	15.7 —		13.7		14.1	
\mathcal{L}_{IJ} \mathcal{L}_{g} \mathcal{L}_{g} \mathcal{L}_{g} \mathcal{L}_{g}	1.46 —		1.92 —		1.92	
テ 地震モーメント M_{0a2} [Nm]	1.54E+18 —		2.65E+18 —		1.68E+18	
イ 計算用面積 [km×km]	8 × 4 —		0 / 0		8 × 4	
背 面積 S_b [km ²]	403.0 403.0		251.4	251.4	299.5	
景 実効応力 σ_b [MPa]	2.4	3.3	2.3	2.7	2.9	
領 すべり量 D _b [m]	0.70	0.70	0.58	0.58	0.88	
域 地震モーメント M_{0b} [Nm]	8.78E+18	8.78E+18	4.53E+18	4.53E+18	8.21E+18	

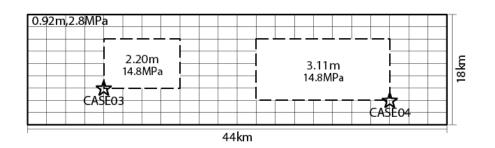

アスペリティと破壊開始点の配置図

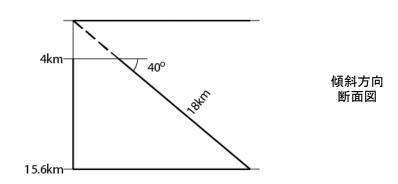
中央構造線断層帯根来区間【中角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

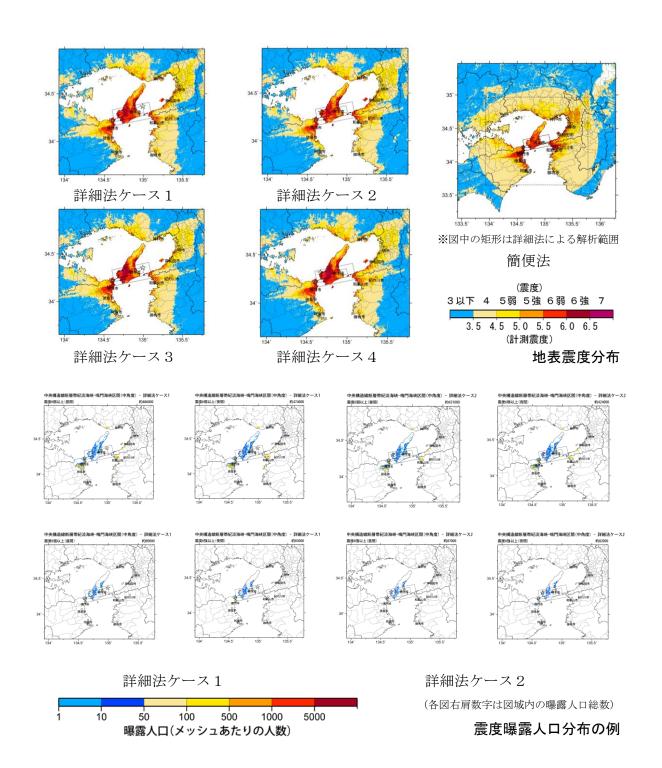
アスペリティと破壊開始点の配置図

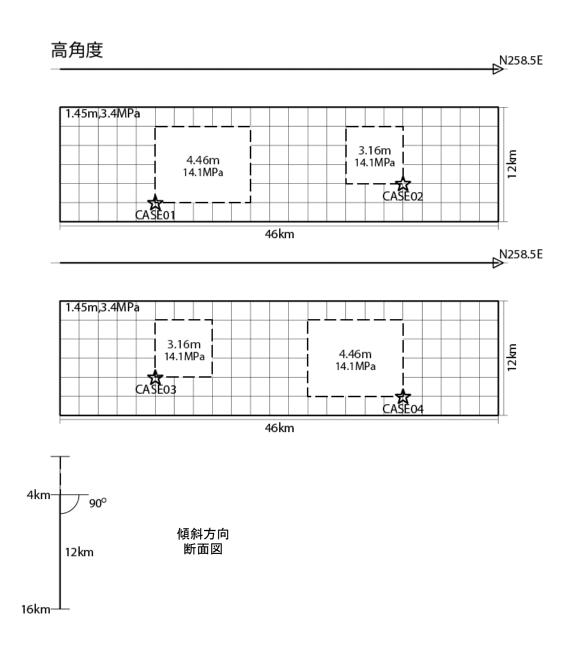
中央構造線断層帯根来区間【高角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

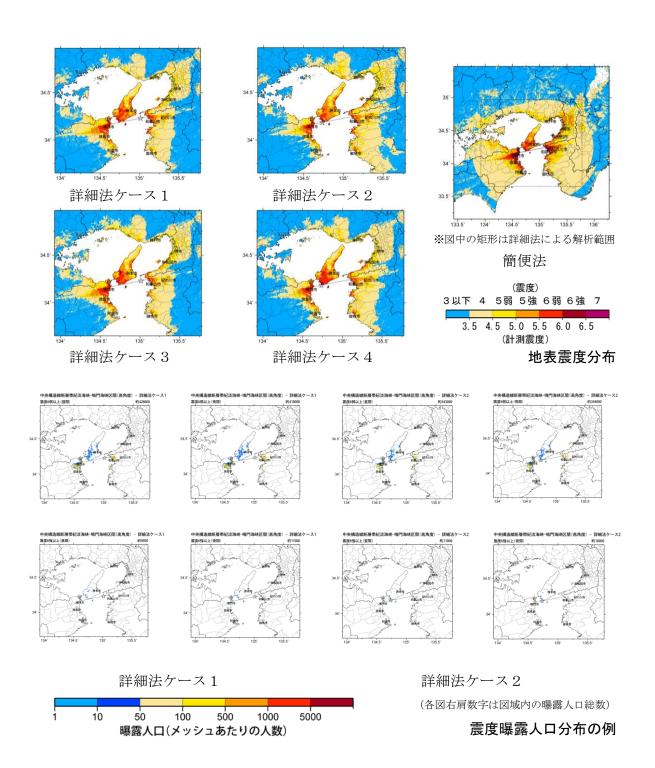

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 中央構造線断層帯紀淡海峡ー鳴門海峡区間


強震動予測のための震源パラメータ (2018 年版提示モデル)

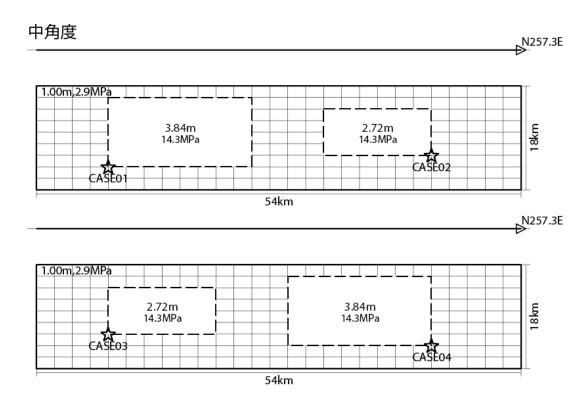

巨視的震源パラメータ	中角	高角度	
断層長さ L [km]	4	42	
地震規模 M	7	7.5	
地震発生層上限深さ H_{s} [km]	4	4	4
地震発生層下限深さ $H_{ m d}$ [km]	1	5	15
設定手順	(イ)	(イ)	(イ)
地震モーメント M_0 [Nm]	3.47E+19	3.47E+19	3.47E+19
モーメントマグニチュード $M_{ m w}$	7.0	7.0	7.0
断層モデル面積 S_{model} [km 2]	792	792	552
静的応力降下量 $\Delta \sigma$ [MPa]	3.8	3.1	3.1
平均すべり量 D [m]	1.40	1.40	2.01
走向 θ [度]	258.5	258.5	258.5
傾斜角 δ [度]	40	40	90
すべり角 λ [度]	180	180	180
断層モデル原点緯度 [°N]	34.2886	34.2886	34.2483
断層モデル原点経度 [°E]	135.0986	135.0986	135.1195
断層モデル上端深さ D_{top} [km]	4	4	4
断層モデル長さ L_{model} [km]	44	44	46
断層モデル幅 $W_{ m model}$ [km]	18	18	12
微視的震源パラメータ			
短周期レベル A [Nm/s²]	1.73E+19	1.52E+19	1.27E+19
短周期レベル(参照) A _{Dan} [Nm/s ²]	1.73E+19	1.73E+19	1.73E+19
11 全 面積 Sa [km²]	202.8	174.2	121.4
リテ 実効応力 σ_a [MPa]	14.8	14.1	14.1
\int_{1}^{1} すべり量 D_{a} [m]	2.81	2.81	4.03
^ペ 地震モーメント <i>M</i> _{0a} [Nm]	1.78E+19 1.53E+19		1.53E+19
ア 面積 $S_{\rm al}$ [km ²]	135.2	116.2	81.0
ス 実効応力 σ _{a1} [MPa]	14.8	14.1	14.1
1 ク すべり量 <i>D</i> al [m]	3.11	3.11	4.46
ァ ・ ・ ・ ・ 地震モーメント M_{0al} [Nm]	1.31E+19	1.13E+19	1.13E+19
イ 計算用面積 [km×km]	14 × 10 12 × 10		10 × 8
ア 面積 S _{a2} [km ²]	67.6	58.1	40.5
ス 宝効応力 σ 。[MPa]	14.8	14.1	14.1
2 ップ すべり量 D_{a2} [m]	2.20	2.20	3.16
ァ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	4.64E+18	3.99E+18	3.99E+18
イ 計算用面積 [km×km]	8 × 8	10 × 6	6 × 6
背 面積 S _b [km ²]	589.2	617.8	430.6
景 実効応力 σ_b [MPa]	2.8	2.7	3.4
領 すべり量 D _b [m]	0.92	1.01	1.45
域 地震モーメント M_{0b} [Nm]	1.69E+19	1.94E+19	1.94E+19

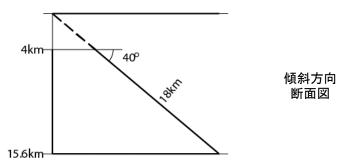

N258.5E



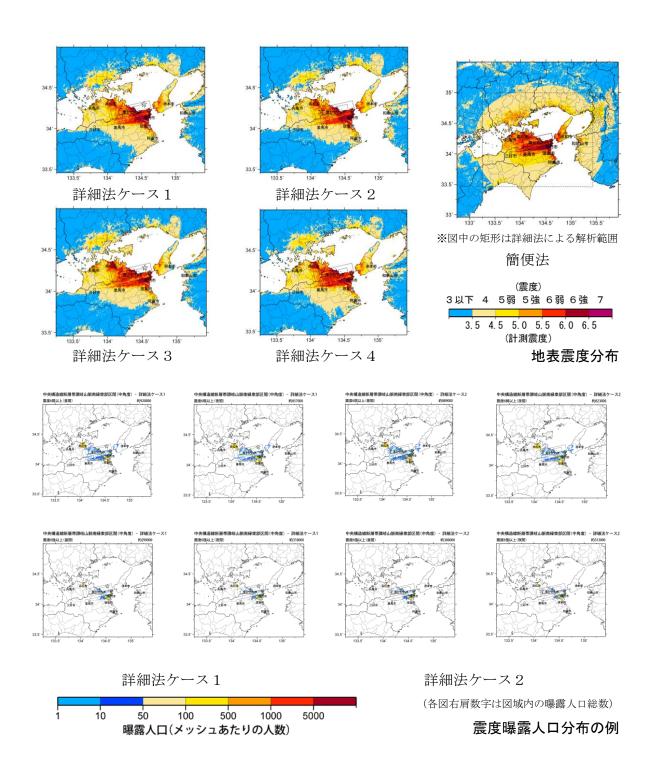


アスペリティと破壊開始点の配置図

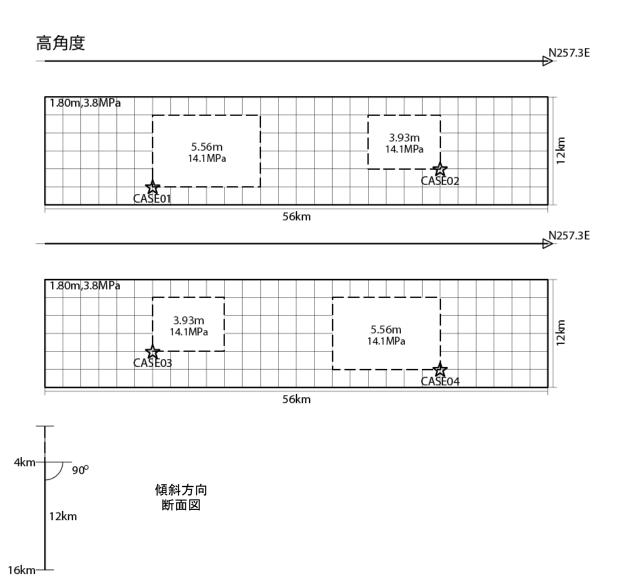

アスペリティと破壊開始点の配置図

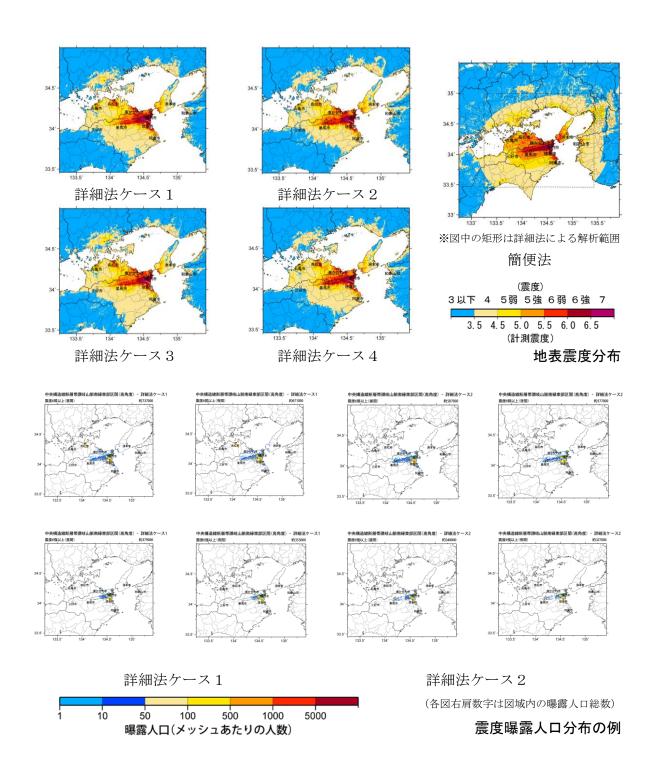


震源断層を特定した地震動予測地図(シナリオ地震動予測地図) 中央構造線断層帯讃岐山脈南縁東部区間


強震動予測のための震源パラメータ (2018 年版提示モデル)

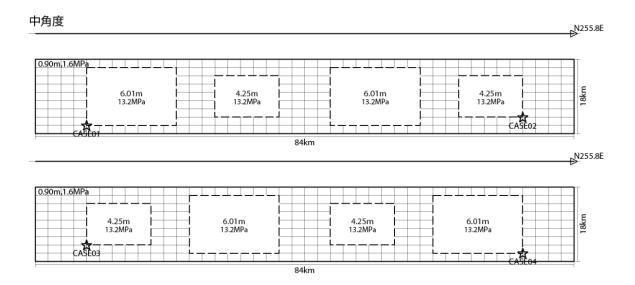
巨視的震源パラメータ	中角	高角度	
断層長さ L [km]	5	52	
地震規模 <i>M</i>	7	7.7	
地震発生層上限深さ H_{s} [km]	4	4	4
地震発生層下限深さ $H_{ m d}$ [km]	1	5	15
設定手順	(イ)	(イ)	(イ)
地震モーメント M_0 [Nm]	5.26E+19	5.26E+19	5.26E+19
モーメントマグニチュード $M_{ m w}$	7.1	7.1	7.1
断層モデル面積 $S_{ m model}$ [km 2]	972	972	672
静的応力降下量 $\Delta\sigma$ [MPa]	4.2	3.1	3.1
平均すべり量 D [m]	1.73	1.73	2.51
走向 θ [度]	257.3	257.3	257.3
傾斜角 δ [度]	40	40	90
すべり角 λ [度]	180	180	180
断層モデル原点緯度 [°N]	34.2186	34.2186	34.1786
断層モデル原点経度 [°E]	134.6423	134.6423	134.6643
断層モデル上端深さ D_{top} [km]	4	4	4
断層モデル長さ L_{model} [km]	54	54	56
断層モデル幅 $W_{ m model}$ [km]	18	18	12
微視的震源パラメータ			
短周期レベルA [Nm/s²]	1.99E+19	1.69E+19	1.40E+19
短周期レベル(参照) A _{Dan} [Nm/s ²]	1.99E+19	1.99E+19	1.99E+19
全面積 S _a [km²] 実効応力 σ [MPa]	288.0	213.8	147.8
リティー 実効応力 σ _a [MPa]	14.3	14.1	14.1
$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ すべり量 D_a [m]	3.47	3.47	5.02
$^{\sim}$ 地震モーメント $_{0a}$ [Nm]	3.12E+19	2.32E+19	2.32E+19
ア 面積 $S_{\rm al}$ [km ²]	192.0	142.6	98.6
ス 実効応力 σ _{al} [MPa]	14.3	14.1	14.1
1 〜 すべり量 <i>D</i> _{al} [m]	3.84	3.84	5.56
$_{\mathcal{F}}$ 地震モーメント $_{M_{0\mathrm{al}}}$ [Nm]	2.30E+19	1.71E+19	1.71E+19
イ 計算用面積 [km×km]	16 × 12 12 × 12		10 × 10
ア 面積 S _{a2} [km ²]	96.0	71.3	49.3
ス 実効応力 σ _{a2} [MPa]	14.3	14.1	14.1
2 ^ヘ すべり量 <i>D</i> _{a2} [m]	2.72	2.72	3.93
ァ 地震モーメント M_{0a2} [Nm]	8.14E+18	6.05E+18	6.05E+18
イ 計算用面積 [km×km]	12 × 8	12 × 6	8 × 6
背 面積 S _b [km ²]	684.0	758.2	524.2
景 実効応力 σ_b [MPa]	2.9	3.0	3.8
領 すべり量 D _b [m]	1.00	1.25	1.80
域 地震モーメント M_{0b} [Nm]	2.14E+19	2.95E+19	2.95E+19

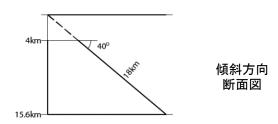



アスペリティと破壊開始点の配置図

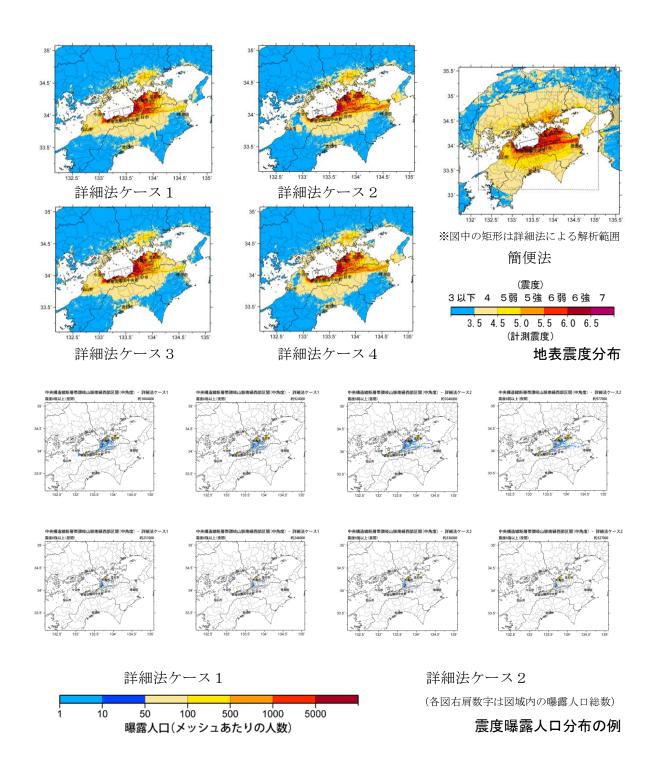
中央構造線断層帯讃岐山脈南縁東部区間【中角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

アスペリティと破壊開始点の配置図

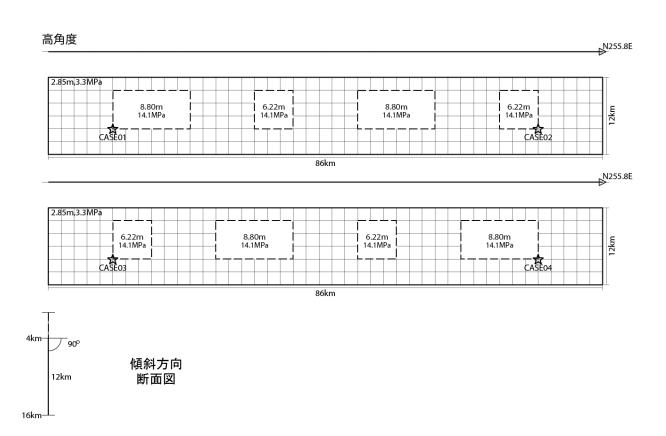


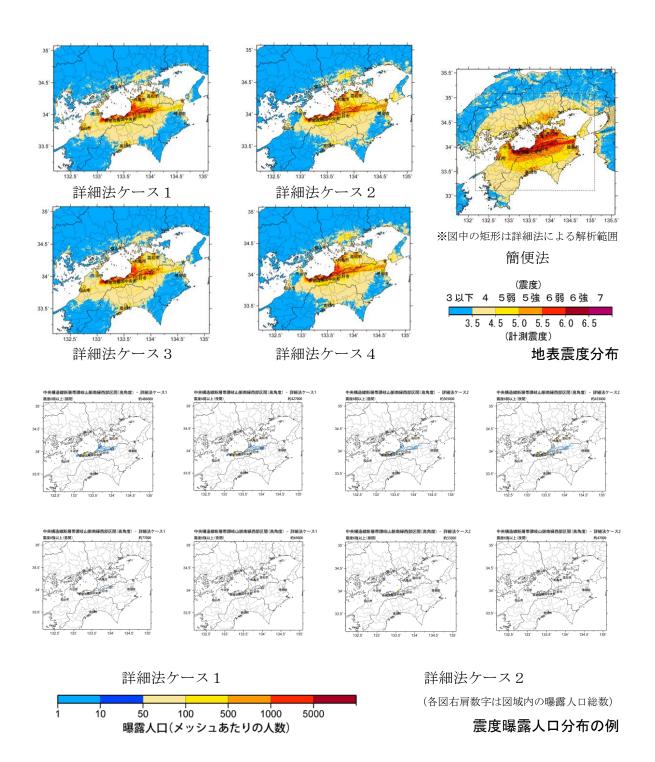

中央構造線断層帯讃岐山脈南縁東部区間【高角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図(シナリオ地震動予測地図) 中央構造線断層帯讃岐山脈南縁西部区間


強震動予測のための震源パラメータ (2018 年版提示モデル)

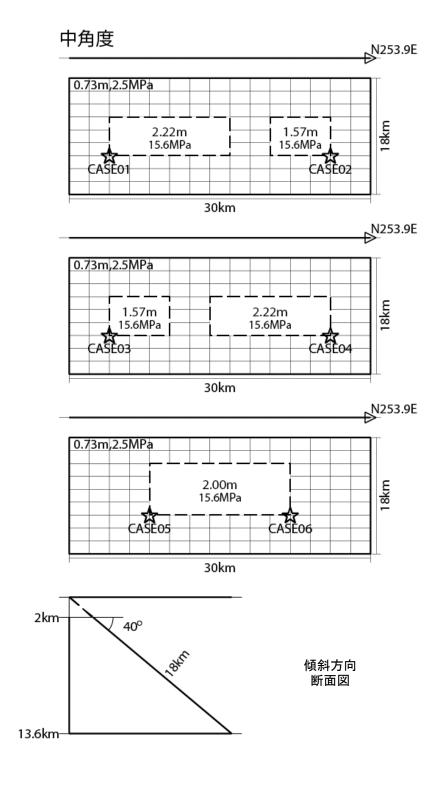
巨視的震源パラメータ		中角	高角	角度			
断層長さ L [km]		8	82				
地震規模 M		8	8.0				
地震発生層上限深さ H_{s} [km]		4	4		4		
地震発生層下限深さ H_{d} [km]		1	5		1	15	
設定手順	(-	亻)	(-	亻)	(-	イ)	
地震モーメント M_0 [Nm]	1.28	E+20	1.28	E+20	1.28	E+20	
モーメントマグニチュード $M_{ m w}$	7	.3	7	.3	7	.3	
断層モデル面積 $S_{ m model}$ [km 2]	15	12	15	12	10	32	
静的応力降下量 $\Delta \sigma$ [MPa]	5	.3	3	.1	3	.1	
平均すべり量 <i>D</i> [m]	2.	71	2.	71		97	
走向 θ [度]		5.8		5.8		5.8	
傾斜角 δ [度]		.0		0		00	
すべり角 λ [度]		80		80		80	
断層モデル原点緯度 [°N]		255		1255		0860	
断層モデル原点経度 [°E]		0908		0908	l	1140	
断層モデル上端深さ D_{top} [km]		4		4	4		
断層モデル長さ $L_{ m model}$ [km]		4		34	86		
断層モデル幅 W _{model} [km]	1	8	1	8	12		
微視的震源パラメータ							
短周期レベル A [Nm/s ²]	2.67E+19 2.11E+19			1.74E+19			
短周期レベル(参照) A _{Dan} [Nm/s ²]	2.67E+19			E+19		E+19	
全面積 Sa [km²]		605.0 332.6			7.0		
リエ 実効応力 σ _a [MPa]		13.2			4.1		
イス すべり量 D_a [m]		42		42	7.94		
・ 地震モーメント M_{0a} [Nm]		E+20		E+19		E+19	
ア 面積 S _{al} [km ²]	201.7	201.7	110.9	110.9	75.7	75.7	
ス 実効応力 σ _{a1} [MPa]	13.2	13.2	14.1	14.1	14.1	14.1	
1 リ すべり量 D_{al} [m]	6.01	6.01	6.01	6.01	8.80	8.80	
テ 地震モーメント <i>M</i> _{0al} [Nm]		l .			2.08E+19	l .	
イ計算用面積 [km×km]		14 × 14		14 × 8	12 × 6	12 × 6	
ア 面積 S _{a2} [km ²] ス 実効にカ σ [MPo]	100.8 13.2	100.8 13.2	55.4 14.1	55.4 14.1	37.8 14.1	37.8 14.1	
夫効心力 O _{a2} [MFa]	4.25	4.25	4.25	4.25	6.22	6.22	
ソ 四 ラー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		ı	4.25 7.35E+18			7.35E+18	
テ 地震モーメント M _{0a2} [Nm] イ 計算用面積 [km×km]		l .	10 × 6	7.33E+18 10 × 6	6 × 6	6 × 6	
7-1± 0 51 22			10 × 6 10 × 6				
	907.0		2.7		805.0 3.3		
景 実効応力 σ_b [MPa] 領 すべり量 D_b [m]	1.6		2.7 1.95		2.85		
域 地震モーメント M_{0b} [Nm]	0.90						
地辰モーケンドM _{0b} [NIII]	2.56E+19		7.16E+19		7.16E+19		



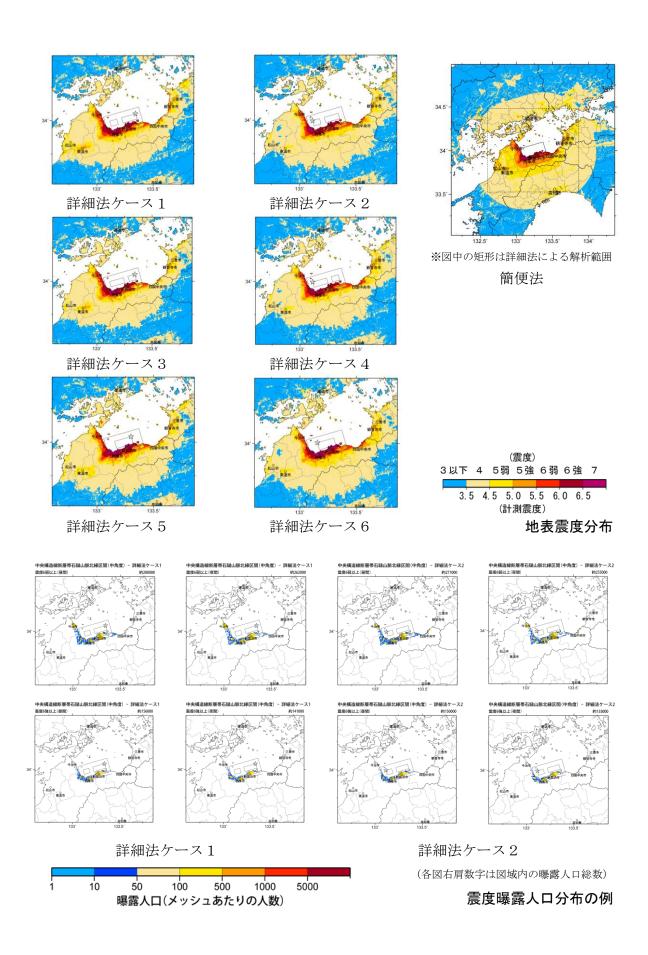

アスペリティと破壊開始点の配置図

中央構造線断層帯讃岐山脈南縁西部区間【中角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

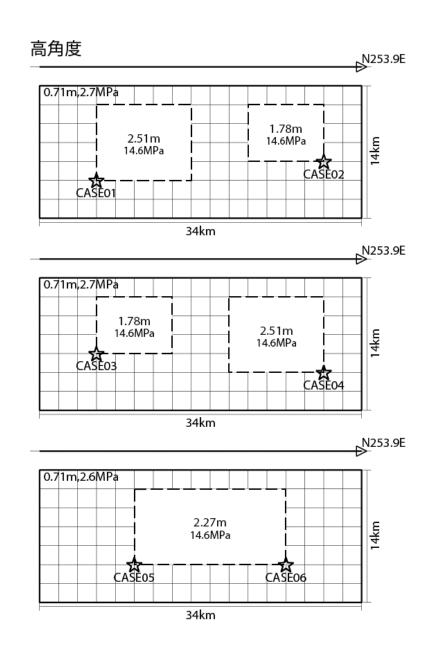
アスペリティと破壊開始点の配置図

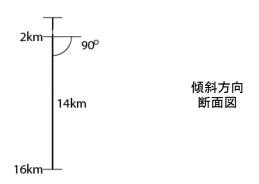


中央構造線断層帯讃岐山脈南縁西部区間【高角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

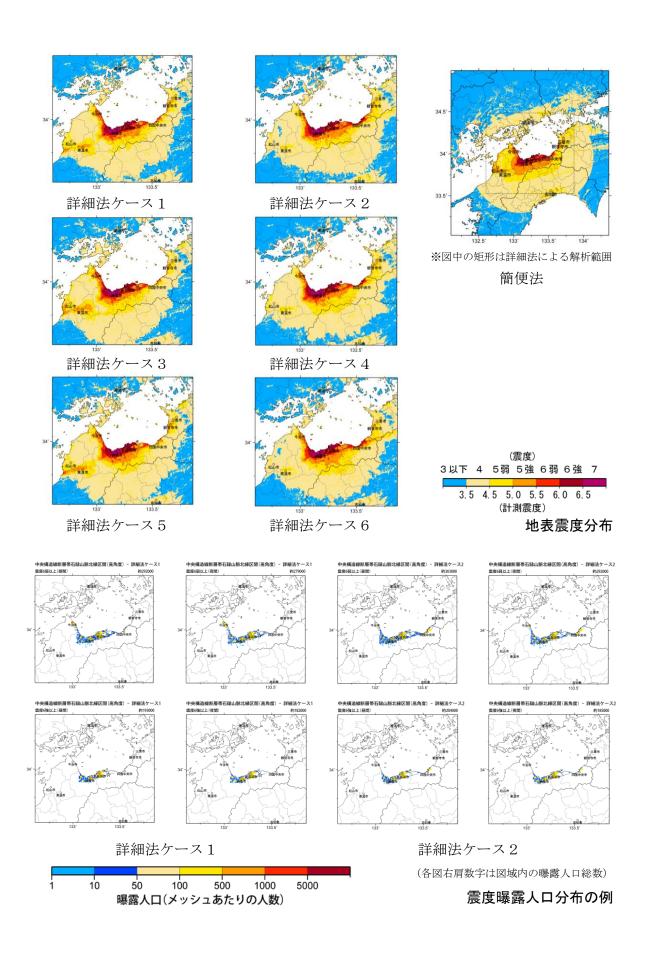

震源断層を特定した地震動予測地図(シナリオ地震動予測地図) 中央構造線断層帯石鎚山脈北縁区間

強震動予測のための震源パラメータ (2018 年版提示モデル)


巨視的震源パラメータ	中負	角度	高角度			
断層長さ <i>L</i> [km]	2	9	29			
地震規模 M	7.3		7.3			
地震発生層上限深さ H_{s} [km]	2			2	2	
地震発生層下限深さ $H_{ m d}$ [km]	1	5		1	5	
設定手順	(-	()	(,	イ)	(イ)	
地震モーメント M_0 [Nm]	1.69	E+19	1.69	E+19	1.69E+19	
モーメントマグニチュード $M_{ m w}$	6	.8	6	5.8	6	.8
断層モデル面積 $S_{ m model}$ [km 2]	54	40	4	76	4	76
静的応力降下量 $\Delta \sigma$ [MPa]	3	.3	۷	1.0	3	.1
平均すべり量 <i>D</i> [m]		00		.13		.13
走向 θ [度]	25	3.9	25	53.9	25	3.9
傾斜角 δ [度]	4	0		90	9	00
すべり角 λ [度]		30		80		80
断層モデル原点緯度 [°N]	1	816		9660		9660
断層モデル原点経度 [°E]	1	4120		.4399		4399
断層モデル上端深さ D_{top} [km]	1	2		2	2	
断層モデル長さ L_{model} [km]		0		34	34	
断層モデル幅 $W_{ m model}$ [km]	1	8		14	14	
微視的震源パラメータ						
短周期レベルA [Nm/s ²]	1	E+19		1.36E+19		E+19
短周期レベル(参照) A _{Dan} [Nm/s ²]		E+19	1.36E+19			E+19
全 重積 S_a [km ²] 実効応力 σ [MPa]	1	3.6	128.8			4.7
テノ スグルのプ Oa [IVII a]	1	5.6		4.6		4.1
$A \sim 19$ $\times 9 \equiv D_a [III]$	1				27	
・ 地震モーメント M_{0a} [Nm]				E+18		E+18
ア 面積 S_{a1} [km ²] ス 実効応力 σ . [MPa]	75.7	113.6	85.9	128.8	69.8	104.7
o o al [ivii a]	15.6	15.6	14.6	14.6	14.1	14.1
1 リ すべり量 D _{al} [m]	2.22	2.00	2.51	2.27	2.51	2.27
テ 地震モーメント <i>M</i> _{0a1} [Nm]			6.74E+18	l		7.42E+18
イ 計算用面積 [km×km] ア 面積 S _{a2} [km ²]	12 × 6 37.9	14 × 8	10 × 8 16 × 8		12 × 6 34.9	10 × 10
			42.9			
っ ペース がんり 0 a2 [tvii u]	15.6 1.57		14.6 1.78	_	14.1 1.78	_
7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.57 1.85E+18		2.38E+18		1.78 1.94E+18	
	6 × 6		I I I		1.94E+18 6 × 6	
イ 計算用面積 [km×km] _書 面積 S _b [km ²]	426.4	426.4	8 × 6 — 347.2		371.3	371.3
H	2.5	2.5	2.7	2.6	2.7	3.6
景 $ $ 実効応力 σ_b [MPa] 領 $ $ すべり量 D_b [m]	0.73	0.73	0.71	0.71	0.81	0.81
4-1				l		1
^域 地震モーメント M_{0b} [Nm]	9.76E+18	9.76E+18	7.73E+18	7.73E+18	9.44E+18	9.44E+18

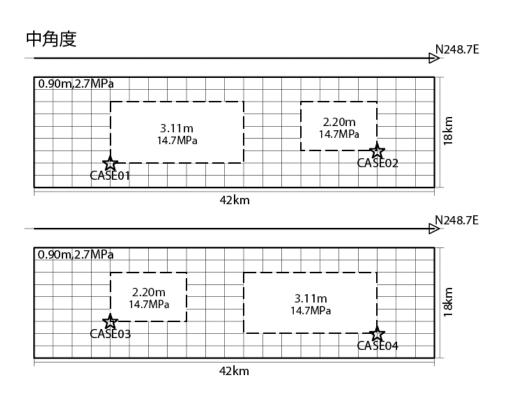


アスペリティと破壊開始点の配置図



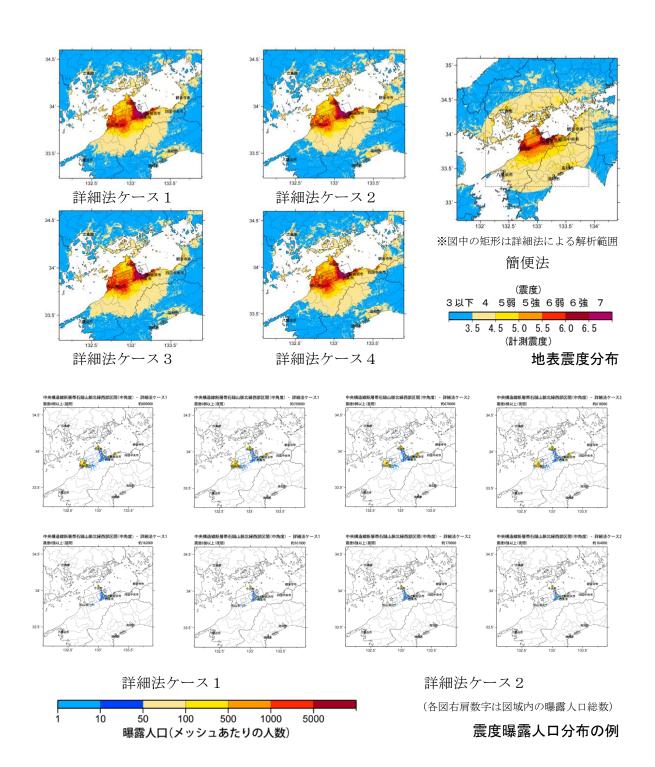
中央構造線断層帯石鎚山脈北縁区間【中角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

アスペリティと破壊開始点の配置図

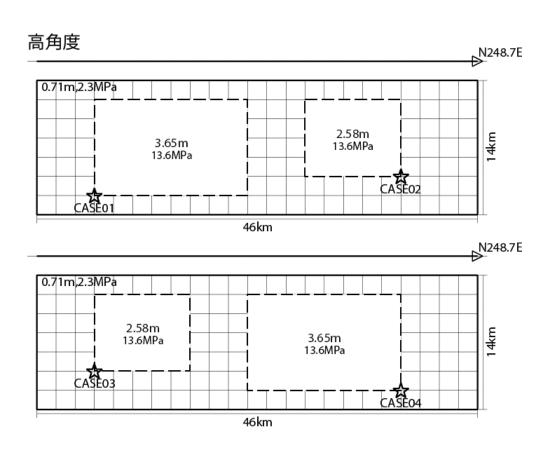


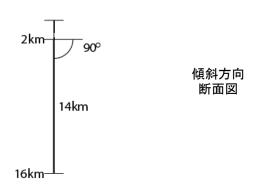
中央構造線断層帯石鎚山脈北縁区間【高角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 中央構造線断層帯石鎚山脈北縁西部区間

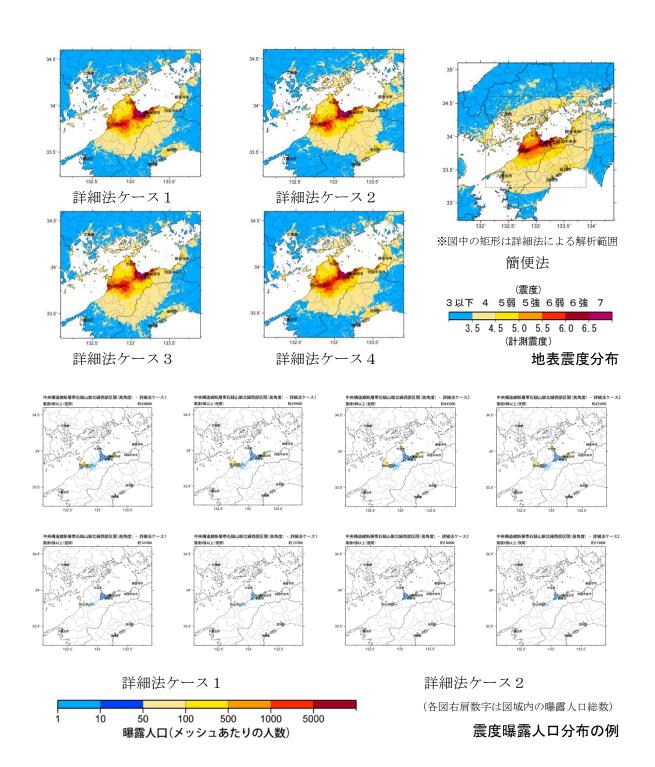

強震動予測のための震源パラメータ (2018 年版提示モデル)

巨視的震源パラメータ	中角	角度	高角	高角度		
断層長さ L [km]	4	-1	41			
地震規模 M	7	.5	7.5			
地震発生層上限深さ H_{s} [km]	2	2	2			
地震発生層下限深さ H_{d} [km]	1	5	15			
設定手順	(イ)	(イ)	(イ)	(イ)		
地震モーメント M_0 [Nm]	3.31E+19	3.31E+19	3.31E+19	3.31E+19		
モーメントマグニチュード $M_{ m w}$	6.9	6.9	6.9	6.9		
断層モデル面積 $S_{model}[km^2]$	756	756	644	644		
静的応力降下量 $\Delta \sigma$ [MPa]	3.9	3.1	4.9	3.1		
平均すべり量 <i>D</i> [m]	1.40	1.40	1.65	1.65		
走向 θ [度]	248.7	248.7	248.7	248.7		
傾斜角 δ [度]	40	40	90	90		
すべり角 λ [度]	180	180	180	180		
断層モデル原点緯度 [°N]	33.9276	33.9276	33.9342	33.9342		
断層モデル原点経度 [°E]	133.2345	133.2345	133.4399	133.4399		
断層モデル上端深さ D_{top} [km]	2	2	2	2		
断層モデル長さ $L_{ m model}$ [km]	42	42	46	46		
断層モデル幅 W_{model} [km]	18	18	14	14		
微視的震源パラメータ						
短周期レベルA [Nm/s ²]	1.70E+19	1.49E+19	1.70E+19	1.37E+19		
短周期レベル(参照) A _{Dan} [Nm/s ²]	1.70E+19	1.70E+19	1.70E+19	1.70E+19		
」全面積 Sa [km²]	199.6	166.3	234.3	141.7		
リエ 実効応力 σ _a [MPa]	14.7	14.1	13.6	14.1		
\int_{A}^{A} すべり量 D_a [m]	2.81	2.81	3.29	3.29		
$^{\sim}$ 地震モーメント M_{0a} [Nm]	1.75E+19	1.46E+19	2.41E+19	1.46E+19		
ア 面積 S_{a1} [km ²]	133.0	110.9	156.2	94.5		
ス 実効応力 $\sigma_{\rm al}$ [MPa]	14.7	14.1	13.6	14.1		
1 パ すべり量 D _{al} [m]	3.11	3.11	3.65	3.65		
ァ 地震モーメント M_{0al} [Nm]	1.29E+19	1.08E+19	1.78E+19	1.08E+19		
イ 計算用面積 [km×km]	14 × 10	14 × 8	16 × 10	12 × 8		
ア 面積 S _{a2} [km ²]	66.5 55.4		78.1	47.2		
ス 実効応力 σ_{a2} [MPa]	14.7	14.1	13.6	14.1		
2 ^ペ リ すべり量 <i>D</i> _{a2} [m]	2.20	2.20	2.58	2.58		
ァ テ 地震モーメント M_{0a2} [Nm]	4.57E+18	3.81E+18	6.29E+18	3.81E+18		
イ 計算用面積 [km×km]	8 × 8	10 × 6	10 × 8	8 × 6		
背 面積 S _b [km ²]	556.4	589.7	409.7	502.3		
景 実効応力 σ_b [MPa]	2.7	2.7	2.3	3.2		
領 すべり量 D _b [m]	0.90	1.01	0.71	1.18		
域 地震モーメント M_{0b} [Nm]	1.56E+19	1.85E+19	9.02E+18	1.85E+19		



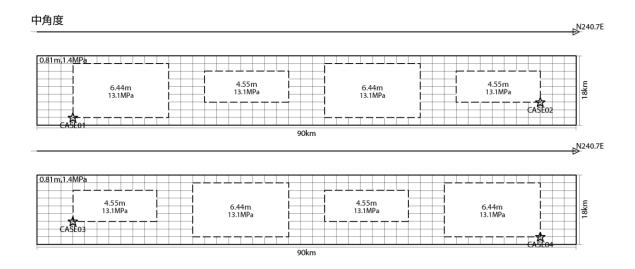


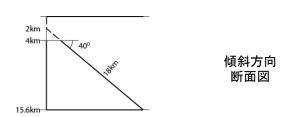
アスペリティと破壊開始点の配置図



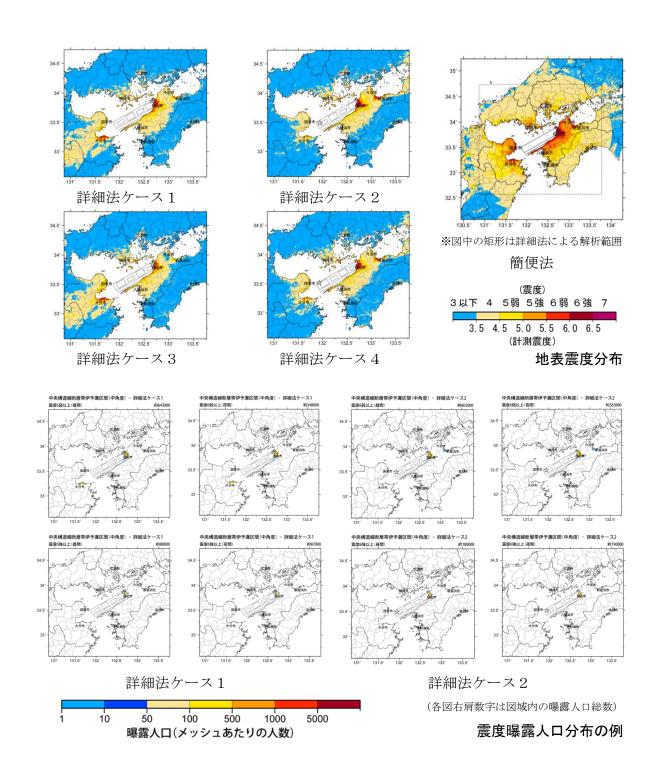
中央構造線断層帯石鎚山脈北縁西部区間【中角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

アスペリティと破壊開始点の配置図

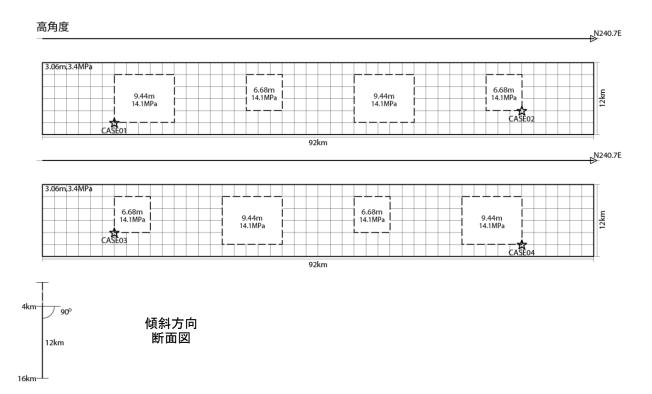

中央構造線断層帯石鎚山脈北縁西部区間【高角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

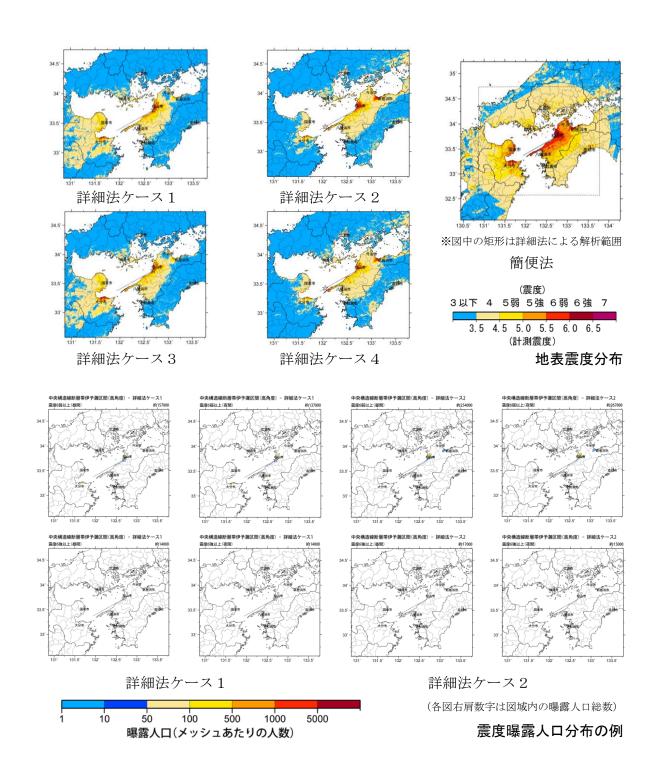

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 中央構造線断層帯伊予灘区間

強震動予測のための震源パラメータ (2018 年版提示モデル)


巨視的震源パラメータ			角度	と小 て ノ ハ		角度
断層長さ L [km]			8			8
地震規模 M		8	.1		8	.1
地震発生層上限深さ H_{s} [km]		-	4		4	4
地震発生層下限深さ $H_{ m d}$ [km]		1	5		1	5
設定手順	(-	1)	(-	()	(-	了)
地震モーメント M_0 [Nm]	1.47	E+20	1.47	E+20	1.47	E+20
モーメントマグニチュード $M_{ m w}$	7	.4	7	.4	7	.4
断層モデル面積 $S_{ m model}$ [km 2]	16	20	16	20	11	04
静的応力降下量 $\Delta\sigma$ [MPa]	5	.5	3	.1	3	.1
平均すべり量 <i>D</i> [m]	2.	90	2.	90	4.	26
走向 θ [度]	24	0.7	24	0.7	24	0.7
傾斜角 δ [度]		0		0	l	0
すべり角 λ [度]		80		30		80
断層モデル原点緯度 [°N]		7935		7935		7792
断層モデル原点経度 [°E]		7826		7826	l	8046
断層モデル上端深さ $D_{top}[km]$		4		4	l	4
断層モデル長さ L_{model} [km]		0		0	I	2
断層モデル幅 W _{model} [km]	1	8	1	8	1	2
微視的震源パラメータ						
短周期レベルA [Nm/s²]		E+19		E+19		E+19
短周期レベル(参照) A _{Dan} [Nm/s ²]	2.80E+19 678.5			E+19		E+19
短周期レベル(参照) A_{Dan} [Nm/s ²]	678.5			6.4	l	2.9
リア 実効応力 σ_a [MPa]	13.1			1.1		4.1 50
$A \sim 9$ $\times 9$ $\oplus D_a$ [III]	5.81			81		52
へ 地震モーメント M _{0a} [Nm]		E+20		E+19		E+19
ア 面積 S_{al} [km ²]	226.2 13.1	226.2 13.1	118.8	118.8 14.1	81.0	81.0
ス 実効応力 σ_{a1} [MPa] 1 $^{\circ}_{11}$ すべり量 D_{a1} [m]	6.44	6.44	14.1 6.44	6.44	14.1 9.44	14.1 9.44
2 1		I .			9.44 2.39E+19	l .
テ 地震モーメント M _{0al} [Nm] イ 計算用面積 [km×km]		I .	12×10			10×8
ア 面積 S _{a2} [km ²]	113.1	113.1	59.4	59.4	40.5	40.5
ス 実効応力 σ_{a2} [MPa]	13.1	13.1	14.1	14.1	14.1	14.1
0~」ナベル島 D […]	4.55	4.55	4.55	4.55	6.68	6.68
フリッペリ 里 D _{a2} [m] テ 地震モーメント M _{0a2} [Nm]		I .			8.44E+18	l .
イ 計算用面積 [km×km]	14 × 8	14 × 8	10 × 6	10 × 6	6 × 6	6 × 6
		1.5		53.6		1.1
背 $\begin{bmatrix} \text{面積 } S_b \text{ [km}^2] \end{bmatrix}$ 景 $\begin{bmatrix} \text{実効応力 } \sigma_b \text{ [MPa]} \end{bmatrix}$.4		.8		.4
領 すべり量 D _b [m]		81		08	l	06
域 地震モーメント M_{0b} [Nm]		E+19		E+19		E+19

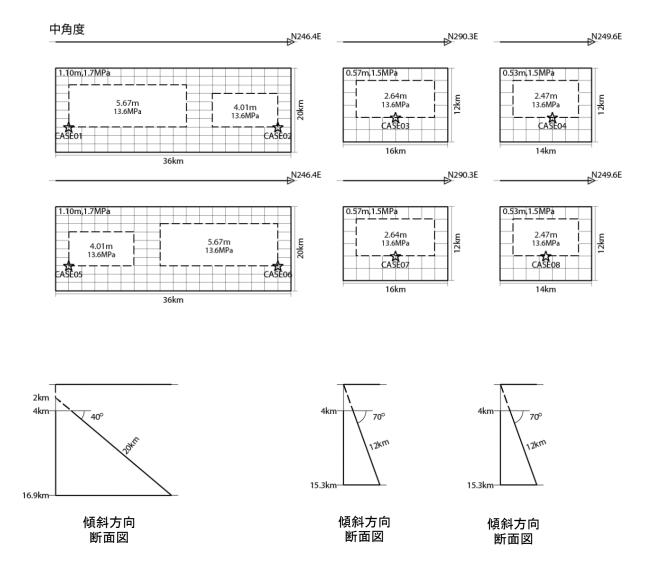
※赤字: アスペクト比が2を超えたことにより平均応力降下量3.1MPa、アスペリティ面積が断層面積の22%を仮定したモデル。このモデルは震源パラメータを示すのみであり、断層モデル図および地表震度分布図は扱わない。



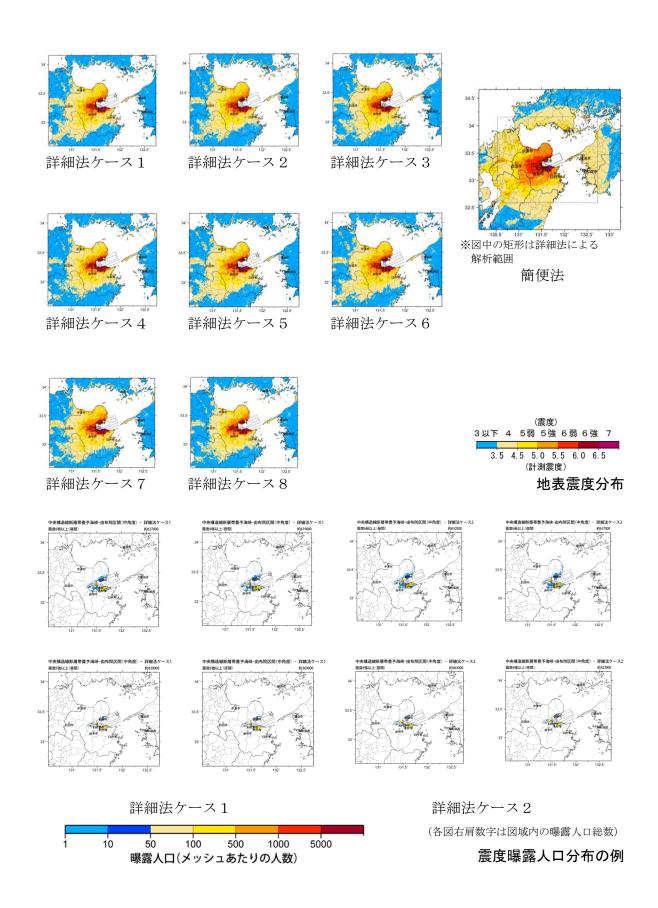

アスペリティと破壊開始点の配置図

中央構造線断層帯伊予灘区間【中角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

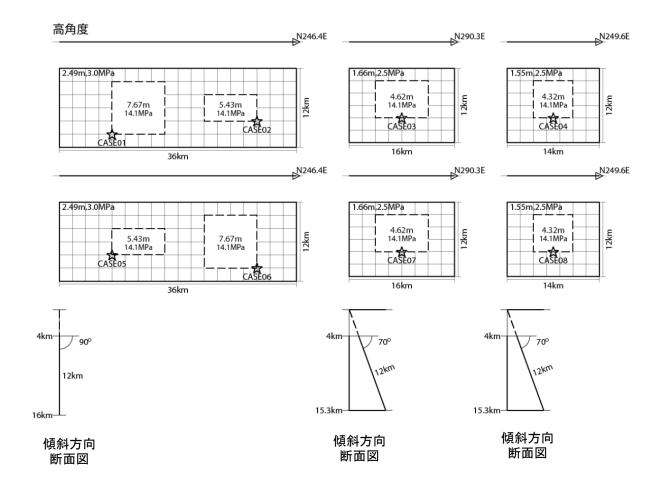
アスペリティと破壊開始点の配置図

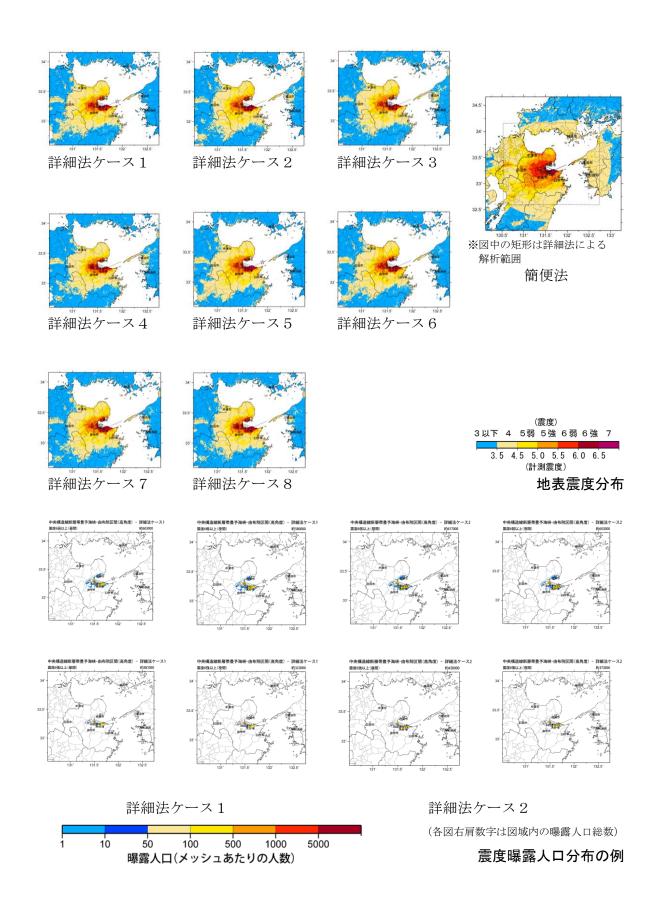

中央構造線断層帯伊予灘区間【高角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図(シナリオ地震動予測地図) 中央構造線断層帯豊予海峡ー由布院区間


強震動予測のための震源パラメータ (2018 年版提示モデル)

巨視的震源パラメータ			中負	角度				高角度	
断層長さ <i>L</i> [km]			6	1				61	
地震規模 M			7	.8				7.8	
地震発生層上限深さ H_{s} [km]			4	1				4	
地震発生層下限深さ $H_{ m d}$ [km]			1	5				15	
設定手順		(イ)			(イ)			(イ)	
地震モーメント M_0 [Nm]		7.18E+19			7.18E+19			7.18E+19	
モーメントマグニチュード $M_{ m w}$		7.2			7.2			7.2	
断層モデル総面積 $S_{ m model}$ [km 2]		1080			1080			792	
静的応力降下量 $\Delta\sigma$ [MPa]		4.9			3.1			3.1	
平均すべり量 <i>D</i> [m]		2.13			2.13			2.91	
セグメント									
走向 θ [度]	246.4	290.3	249.6	246.4	290.3	249.6	246.4	290.3	249.6
傾斜角 δ [度]	40	70	70	40	70	70	90	70	70
すべり角 λ [度]	180	-90	-90	180	-90	-90	180	-90	-90
断層モデル原点緯度 [°N]	33.3816	33.2456	33.2960	33.3816	33.2456	33.2960	33.3619	33.2456	33.2960
断層モデル原点経度 [°E]	131.9633	131.6304	131.4591	131.9633	131.6304	131.4591	131.9736	131.6304	131.4591
断層モデル上端深さ $D_{top}[km]$	4	4	4	4	4	4	4	4	4
セグメント長さ L _{model_seg} [km]	36	16	14	36	16	14	36	16	14
セグメント幅 $W_{model_seg}[km]$	20	12	12	20	12	12	12	12	12
セグメント面積 S _{model_seg} [km ²]	720	192	168	720	192	168	432	192	168
セグメント地震モーメント M_{0seg} [Nm]	5.75E+19	7.91E+18	6.48E+18	5.75E+19	7.91E+18	6.48E+18	4.67E+19	1.38E+19	1.13E+19
セグメント平均すべり量 $D_{seg}[m]$	2.56	1.32	1.24	2.56	1.32	1.24	3.46	2.31	2.16
微視的震源パラメータ									
短周期レベル A [Nm/s²]		2.20E+19			1.78E+19			1.52E+19	
短周期レベル(参照) A _{Dan} [Nm/s ²]		2.20E+19			2.20E+19			2.20E+19	
全 総面積 S _a [km²]		392.5			237.6			174.2	
実効応力 σ _a [MPa]		13.6			14.1			14.1	
プス 面積 $S_{a \text{ seg}} [\text{km}^2]$	261.7	69.8	61.1	158.4	42.2	37.0	95.0	42.2	37.0
11 9 イリ里 D _{a_seg} [III]	5.11	2.64	2.47	5.11	2.64	2.47	6.93	4.62	4.32
地震モーメント M _{Oa_seg} [Nm]						2.85E+18			
ア 面積 $S_{al sca}$ [km ²]	174.4	69.8	61.1	105.6	42.2	37.0	63.4	42.2	37.0
。 大次がいり o al seg [wir a]	13.6	13.6	13.6	14.1	14.1	14.1	14.1	14.1	14.1
1 リ すべり量 D _{al_seg} [m]	5.67	2.64	2.47	5.67	2.64	2.47	7.67	4.62	4.32
テ 地震モーメント M_{0al_seg} [Nm]			4.71E+18			2.85E+18		l	l 1
イ 計算用面積 [km×km]	18 × 10	12 × 6	10 × 6	10 × 10	8 × 6	6 × 6	8 × 8	8 × 6	6 × 6
ア 面積 $S_{a2 \text{ see}} [\text{km}^2]$	87.2	_	_	52.8	_	_	31.7	_	_
2 Seg [VIII a]	13.6	_	_	14.1	_	_	14.1	_	-
2 リ すべり量 D _{a2 seg} [m]	4.01	_	_	4.01	_	_	5.43	_	_
テ 地震モーメント M _{0a2_seg} [Nm] イ 計算用面積 [km×km]	1.09E+19	_	_	6.60E+18	_	_	5.37E+18	_	_
計算/計画根 [Kill-Kill]	10 × 8	122.2	106.0	8 × 6	140.9	121.0	8 × 4	140.9	121.0
背 面積 S _{b seg} [km²]	458.3 1.7	1.5	106.9 1.5	561.6 2.3	149.8 2.5	131.0 2.5	337.0 3.0	149.8 2.5	131.0 2.5
景 実効応力 σ _{b_seg} [MPa] 領 すべり量 D _{b-seg} [m]	1.7	0.57	0.53	1.84	0.95	0.89	2.49	1.66	1.55
領 すべり量 D_{b_seg} [m] 地震モーメント M_{0b_seg} [Nm]								l	
地長で一クント M _{Ob seg} [NM]	1.5/E+19	2.16E+18	1.//E+18	3.22E+19	4.43E+18	3.63E+18	2.01E+19	7.75E+18	6.34E+18


※<mark>赤字</mark>: アスペクト比が2を超えたことにより平均応力降下量3.1MPa、アスペリティ面積が断層面積の22%を仮定したモデル。このモデルは震源パラメータを示すのみであり、断層モデル図および地表震度分布図は扱わない。


アスペリティと破壊開始点の配置図

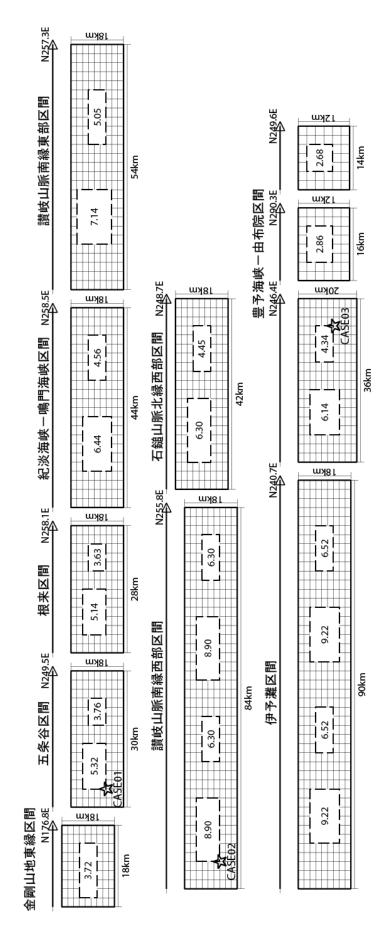
中央構造線断層帯豊予海峡ー由布院区間【中角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

アスペリティと破壊開始点の配置図

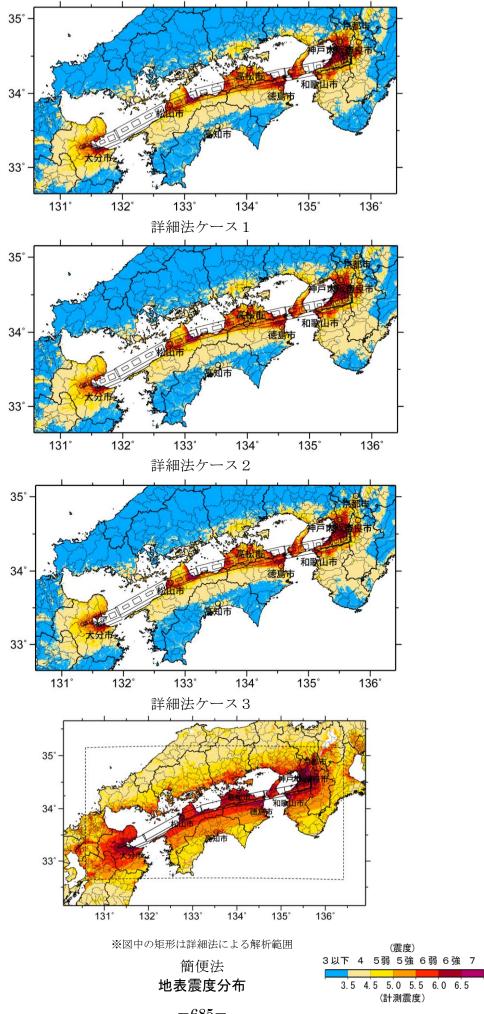
中央構造線断層帯豊予海峡ー由布院区間【高角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図(シナリオ地震動予測地図) 中央構造線断層帯 金剛山地東縁区間~豊予海峡ー由布院区間

強震動予測のための震源パラメータ (2018 年版提示モデル)

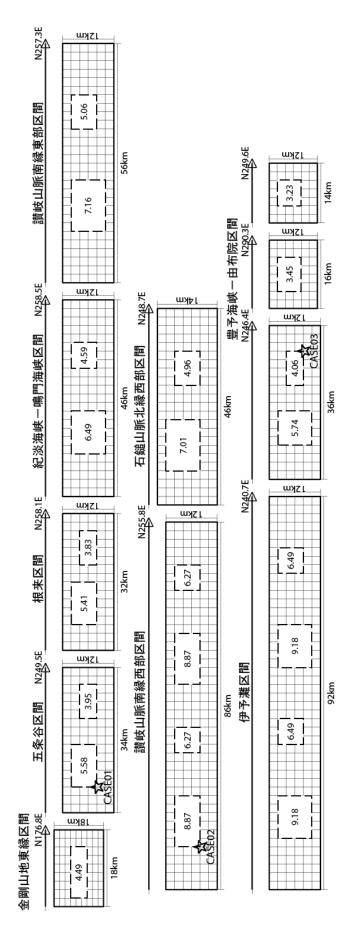

							中角度						
							444km 8.0程度以上						
							注のとおり						
「地震モーメント Mo[Nm] 「キーメントッグ・チュード M							8.10E+20						
							6.00.0						
- 断層モデル総由積 S.model [km-] 整めにも象に中々(twps)							8100.0						
							3.20						
セグメント	金剛	火姜汀	根末	紀淡	潜岐東	潜收西	.西	石鎚西	(小) 瀬	攤		量予	
地震発生層上限深さ H。[km]	2	4	4	4	4	4		2	4			4	
地震発生層下限深き H_d $[km]$	15	15	15	15	15	15		15	15			15	
(1)	176.8	249.5	258.1	258.5	257.3	255	8.	248.7	240	.7	246.4	290.3	249.6
「御挙耳の[坂] 十六の角え[歩]	3 8	180	180	04 68	180	180	. 0	180	180	- 0	180	2 6,	₽ 9-
* 断層モデル原点緯度 [°N]	34.5491	34.4101	34.3398	34.2886	34.2186	34.1255	255	33.9276	33.7935	35	33.3816	33.2456	33.2960
断層モデル以点絵度 [ºE]	135.6597	135.6928	135.3973	135.0986	134.6423	134.0	806	133.2345	132.7826	978	131.9633	131.6304	131,4591
	7	4 ;	4 ¦	4 ;	4	4 ;		7	4 ;		4]	4 ;	4]
セクメント長さ T vcg [km]	18	30	28	44	54	84		42	06		36	16	14
トクメント har was [km]	18.0	18.0	18.0	18.0	18.0	18.0	0	18.0	18.0	0	20.0	12.0	12.0
セグメント	324.0	540.0	504.0	792.0	972.0	1512.0	5.0	756.0	1620.0	0.0	720.0	192.0	168.0
セグメント地版モーメント Moseg [Nm]	1.88E+19	4.05E+19	3.65E+19	7.19E+19	9.77E+19	1.90E+20	+20	6.70E+19	2.10E+20	+20	6.23E+19	8.58E+18	7.02E+18
セグメント平均すべり量 Dseg [m]	1.86	2.40	2.32	2.91	3.22	4.02	2	2.84	4.16	9	2.77	1.43	1.34
微視的震源パラメータ													
N ₂							4.88E+19						
短周期							4.94E+19						
							1782.0						
7,	11.0	0 01 1	0 011	0 7/1	212.0	222		1663	730		1504	12.7	0.17
۲ ۲۷	71.3	118.8	110.9	1.74.2	213.8	332.6	ę,	166.3	556.4	4. (158.4	42.2	37.0
- 「今くり用しass [m] - 「妻飯作しょい」 10mm]	3.72 0.07E±10	4.80 1.79E±10	4.64 1.61E±10	5.81 2.16E±10	6.44 4.20E±10	8.03 9.24E±10	51	5.68 2.05E±10	8.32	7.	5.54 2.74E±10	2.86	2.68 2.00E±10
75.00 (1.m ²)	0.272.10	1./0L:17	73.0	3.101.13	4.30E.12 142.6	110.9	110.0	110.0	1188	118.8	105.6	3.77E 10 42.2	37.0
、 トラ mild pal seg [viii] トララ 神栓形して [Mba]	141	14.1	141	14.1	14.1	14.1	14.1	14.1	1 41	1 4 1	14.1	14.1	14.1
, <i>τ</i> Κ ,	3.72	5.32	5.14	6.44	7.14	8.90	8.90	6.30	9.22	9.22	6.14	2.86	2.68
$\frac{1}{1}$	8.27E+18	1.32E+19	1.19E+19	2.34E+19	3.18E+19	3.08E+19	3.08E+19	2.18E+19	3.42E+19	3.42E+19	2.02E+19	3.77E+18	3.09E+18
\	12 × 6	10×8	10 × 8	12×10	12×12	14 × 8	14 × 8	14 × 8	12 × 10	12×10	10×10	8 × 6	9 × 9
分 □ 私 S _{a2 sea} [km²]	ı	39.6	37.0	58.1	71.3	55.4	55.4	55.4	59.4	59.4	52.8	1	I
字. / k	ı	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	1	I
۲: ۲:	I	3.76	3.63	4.56	5.05	6.30	6.30	4.45	6.52	6.52	4.34	I	
Z 		4.65E+18	4.19E+18	8.26E+18	1.12E+19	1.09E+19	1.09E+19	7.70E+18	1.21E+19	1.21E+19	7.16E+18		
		9 × 9	9×9	10×6	12 × 6	10 × 6	10 × 6	10×6	10 × 6	10×6	8 × 6		
TIT	252.7	421.2	393.1	617.8	758.2	1179.4	9.4	589.7	1263.6	9.6	561.6	149.8	131.0
日 景 実効応力 o'b sey [MPa]	1.7	2.3	2.2	2.7	3.0	2.7	_	2.7	2.8	~~	2.3	2.5	2.5
臣章	1.33	1.72	1.66	2.09	2.31	2.88		2.04	2.9	~	1.99	1.03	0.96
	1.05E+19	2.27E+19	2.04E+19	4.02E+19	5.47E+19	1.06E+20	.+20	3.75E+19	1.18E+20	+20	3.49E+19	4.80E+18	3.93E+18

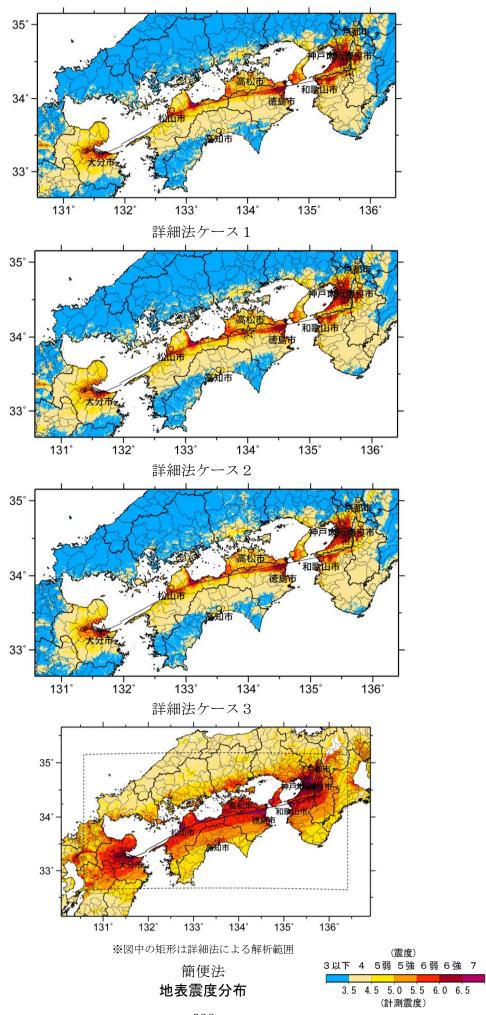
注:各評価単位区間について設定された震源断層の面積の総和より経験的関係式を用いて地震規模(モーメント)を設定した。詳細は付録1の4.1節を参照。

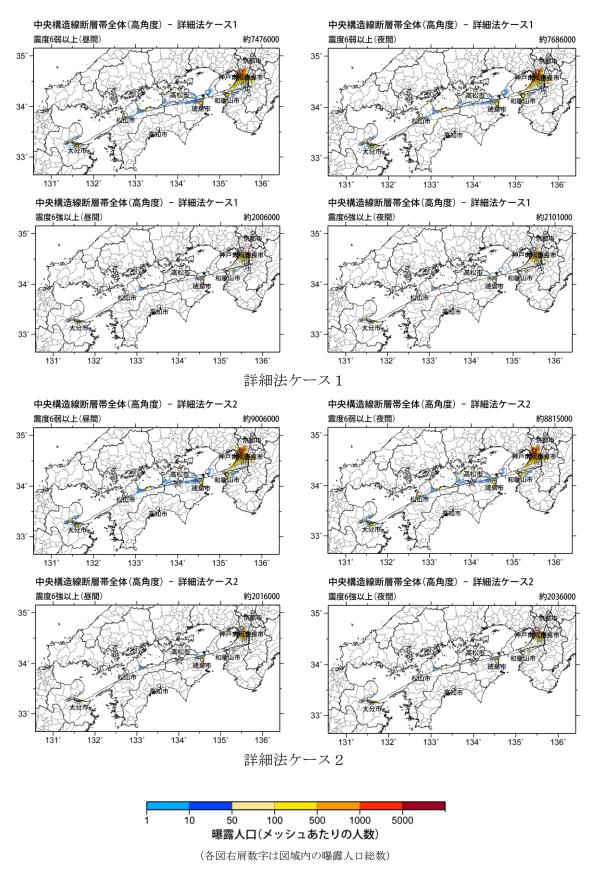

讃岐山脈南縁西部区間の一部、石鎚山脈北縁西部区間の一部と並走する石鎚山脈北縁区間は 除外

口視的な源パラメータ							高角度						
断層長き <i>L</i> [km] 地震規模 <i>M</i>							444km 8.0程度以上						
設定手順							注のとおり						
地震モーメント M ₀ [Nm] エージン! ーバーモ							5.91E+20						
モーメントマグーフュート M w							8./						
断層モデル総両積 S _{model} [km²] 静的ぶ力降下量 A⊄ [MPa]							5912.0 3.1						
							3.20						
セグメント	金剛	五条谷	极來	紀淡	讃岐東	潜向	潜岐西	石鍋西	(m)	~攤~		至量	
地震発生層上限深さ H。[km]	2	4	4	4	4	7	1	2	4	1		4	
地震発生層下限深さ H _d [km]	15	15	15	15	15	11:	5	15	1.	15		15	
走向 θ [度]	176.8	249.5	258.1	258.5	257.3	255	5.8	248.7	24(7.7	246.4	290.3	249.6
傾斜角 δ [度]	40	06	06	06	06	б ! 	0	06	06	0	06	70	70
すべり角 2 [度]	06	180	180	180	180	31	30	180	31	08	180	06-	-90
野商モデル原連機関 [sN] 新暦キ州の直古教品 [65]	34.5491	34.3962	34.3015	34.2483	34.1786	34.0	34.0860	33.9342	33.7	33.7792 132 8046	33,3619	33.2456	33.2960
Para マインのMinda 「 「 」 西面中 アケー 雑除 ヤ D □ [km]	2	4	4	4	4	4	4	77.55.1	4	4	4	4	4
セグメント 長さ From [km]	, <u>«</u>	34	32	46	99	ŏ	- 88	ž 46	.6	92	36	- 91	- 41
セグメント幅 W [km]	18,0	12.0	12.0	12.0	12.0	12	12.0	14.0	12	12.0	12.0	12.0	12.0
セグメント面積 S [km²]	324.0	408.0	384.0	552.0	672.0	103	1032.0	644.0	110	1104.0	432.0	192.0	168.0
セグメント地震ホーメント Mosso [Nm]	2.27E+19	3.21E+19	2.93E+19	5.04E+19	6.78E+19	1.291	1.29E+20	6.36E+19	1.431	.43E+20	3.49E+19	1.03E+19	8.47E+18
セグメント平均すべり量 D.ger [m]	2.24	2.52	2.44	2.93	3.23	4.0	4.00	3.16	4.14	14	2.59	1.73	1.62
微視的震源パラメータ													
短周期レベル <i>A</i> [Nm/s ²]							4.16E+19						
短周期レベル(参照) A _{Dan} [Nm/s ²]							4.45E+19						
全 総面積 S _a [km ⁻] ア 実効広 J _I G. [MPa]							1300.6						
	713	8 68	84.5	121.4	147.8	225	227.0	1417	242	242.9	050	42.2	37.0
イン	4 49	5.03	2.5 8.8 8.8	5.86	6.46	2:727	2.7	6.33	828	 %	5.18	3.45	3.23
) 対 対 に ト メ ト 大 ト M M M M M M M M M M M M M	9.98E+18	1.41E+19	1.29E+19	2.22E+19	2.98E+19	5.67E	5.67E+19	2.80E+19	6.28E+19	3+19	1.54E+19	4.55E+18	3.73E+18
_	71.3	59.8	56.3	81.0	9.86	75.7	75.7	94.5	81.0	81.0	63.4	42.2	37.0
テノ 実効応力 $\sigma_{ m al} { m seg} [{ m MPa}]$	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1
1 ペ すべり 虫 D at seg [m]	4.49	5.58	5.41	6.49	7.16	8.87	8.87	7.01	9.18	9.18	5.74	3.45	3.23
・リ 海療ホーメント M Oal seg [Nm] 宇箟王庁緒 [km×km]	9.98E+18 12 × 6	1.04E+19 10 × 6	9.52E+18 10 × 6	1.64E+19	2.20E+19 10 × 10	2.10E+19 12 × 6	2.10E+19 12 \times 6	2.07E+19 12 × 8	2.32E+19 10 × 8	2.32E+19 10 × 8	1.14E+19 8 × 8	4.33E+18 8 × 6	5./3E+18 6 × 6
-	1	29.9	28.2	40.5	49.3	37.8	37.8	47.2	40.5	40.5	31.7	1	1
テプ (実効応力 Ga2 see [MPa]	1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1	14.1		
イス すべり母 D a2 seg [m]	I	3.95	3.83	4.59	5.06	6.27	6.27	4.96	6.49	6.49	4.06	1	I
2 J 地震モーメント M _{0x2 ver} [Nm]	1	3.68E+18	3.36E+18	5.80E+18	7.79E+18	7.41E+18	7.41E+18	7.31E+18	8.20E+18	8.20E+18	4.01E+18		
計算用面積 [km×km]	I	8 × 4	8 × 4	9 × 9	9 × 8	9 × 9	9 × 9	9 × 8	9 × 9	9 × 9	8 × 4		1
	252.7	318.2	299.5	430.6	524.2	80:	805.0	502.3	861.1	1.1	337.0	149.8	131.0
景 実効応力 $\sigma_{\rm b \ seq} [{\rm MPa}]$	1.7	2.9	2.9	3.4	3.8	3.	3.3	3.2	3.4	4	3.0	2.5	2.5
すべり量 D b wg [m]	1.61	1.81	1.75	2.10	2.32	2.8	2.87	2.27	2.97	76	1.86	1.24	1.16
***	1.2/E+19	1.80E+19	1.64E+19	2.83E+19	3.79E+19	177./	7.22E+19	3.56E+19	7.99E+19	4-I9	1.96E+19	5.80E+18	4.74E+18

注:各評価単位区間について設定された震源断層の面積の総和より経験的関係式を用いて地震規模(モーメント)を設定した。詳細は付録1の4.1節を参照。 讃岐山脈南縁西部区間の一部、石鎚山脈北縁西部区間の一部と並走する石鎚山脈北縁区間は 除外

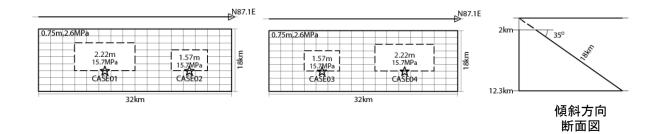

アスペリティと破壊開始点の配置図



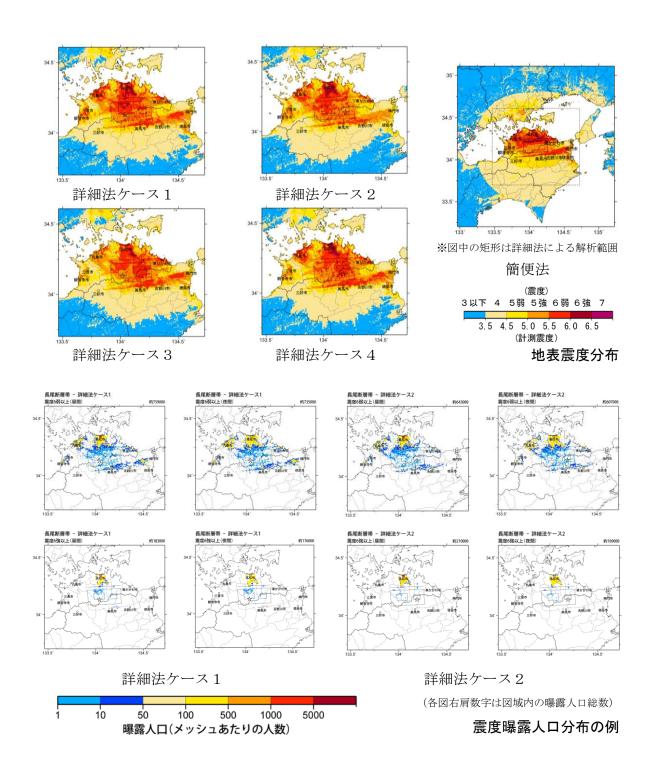

震度曝露人口分布の例

中央構造線断層帯 金剛山地東縁区間~豊予海峡-由布院区間【中角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

アスペリティと破壊開始点の配置図


震度曝露人口分布の例

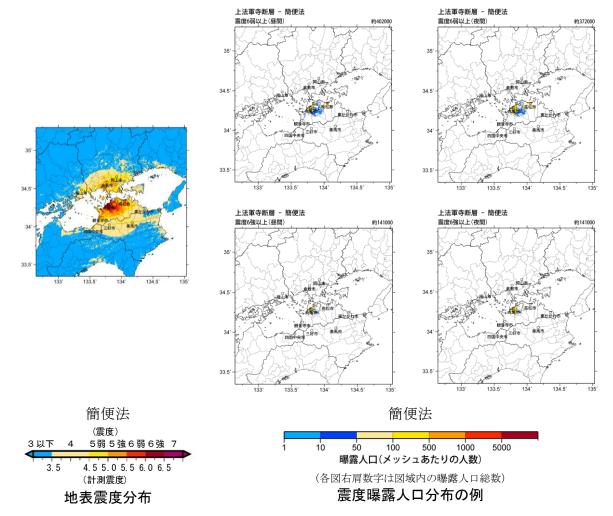
中央構造線断層帯 金剛山地東縁区間〜豊予海峡ー由布院区間【高角度】 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)


震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 長尾断層帯

強震動予測のための震源パラメータ (2018 年版提示モデル)

断層長さ L [km] 30 地震規模 M 7.3 地震発生層上限深さ H_s [km] 2 地震発生層下限深さ H_d [km] 15 設定手順 (\mathcal{T}) 地震モーメント M_0 [Nm] \mathbb{R}
地震発生層上限深さ H_s [km] 2 地震発生層下限深さ H_d [km] 15 設定手順 (イ)地震モーメント M_0 [Nm] 1.80E+19 モーメントマグニチュード M_w 6.8 断層モデル面積 S_{model} [km 2] 576 静的応力降下量 $\Delta\sigma$ [MPa] 3.2 平均すべり量 D [m] 1.00 走向 θ [度] 87.1 傾斜角 δ [度] 87.1 傾斜角 δ [度] 90 断層モデル原点緯度 [°N] 34.2156 断層モデル原点経度 [°E] 133.9131 断層モデル長さ L_{model} [km] 2 断層モデル幅 W_{model} [km] 32 断層モデル幅 W_{model} [km] 18
地震発生層下限深さ $H_{\rm d}$ [km] 15 設定手順 (イ) 地震モーメント M_0 [Nm] 1.80E+19 モーメントマグニチュード $M_{\rm w}$ 6.8 断層モデル面積 $S_{\rm model}$ [km 2] 576 静的応力降下量 $\Delta\sigma$ [MPa] 3.2 平均すべり量 D [m] 1.00 走向 θ [度] 87.1 傾斜角 δ [度] 90 断層モデル原点緯度 [°N] 34.2156 断層モデル原点緯度 [°E] 133.9131 断層モデル長さ $L_{\rm model}$ [km] 2 断層モデル長さ $L_{\rm model}$ [km] 32 断層モデル幅 $W_{\rm model}$ [km] 18 微視的震源パラメータ
設定手順 (イ) 地震モーメント M_0 [Nm] 1.80E+19 モーメントマグニチュード M_w 6.8 断層モデル面積 S_{model} [km 2] 576 静的応力降下量 $\Delta \sigma$ [MPa] 3.2 平均すべり量 D [m] 1.00 走向 θ [度] 87.1 傾斜角 δ [度] 90 断層モデル原点緯度 [°N] 34.2156 断層モデル原点経度 [°E] 133.9131 断層モデル長さ L_{model} [km] 2 断層モデル幅 W_{model} [km] 32 断層モデル幅 W_{model} [km] 18
地震モーメント M_0 [Nm] 1.80E+19 $E-X$
モーメントマグニチュード $M_{ m w}$ 6.8 断層モデル面積 $S_{ m model}$ [km 2] 576 静的応力降下量 $\Delta\sigma$ [MPa] 3.2 平均すべり量 D [m] 1.00 走向 θ [度] 87.1 傾斜角 δ [度] 35 すべり角 λ [度] 90 断層モデル原点緯度 [°N] 34.2156 断層モデル原点経度 [°E] 133.9131 断層モデル上端深さ $D_{ m top}$ [km] 2 断層モデル長さ $L_{ m model}$ [km] 32 断層モデル幅 $W_{ m model}$ [km] 18
断層モデル面積 S_{model} [km 2] 576 静的応力降下量 $\Delta \sigma$ [MPa] 3.2 平均すべり量 D [m] 1.00 走向 θ [度] 87.1 傾斜角 δ [度] 90 断層モデル原点緯度 [$^{\circ}$ N] 34.2156 断層モデル原点経度 [$^{\circ}$ E] 133.9131 断層モデル長さ L_{model} [km] 2 断層モデル幅 W_{model} [km] 32 断層モデル幅 W_{model} [km] 18
静的応力降下量 $\Delta \sigma$ [MPa] 3.2 平均すべり量 D [m] 1.00 走向 θ [度] 87.1 傾斜角 δ [度] 35 すべり角 λ [度] 90 断層モデル原点緯度 [°N] 34.2156 断層モデル原点経度 [°E] 133.9131 断層モデル上端深さ D top [km] 2 断層モデル長さ L model [km] 32 断層モデル幅 W model [km] 18 微視的震源パラメータ
平均すべり量 D [m] 1.00 走向 θ [度] 87.1 傾斜角 δ [度] 35 すべり角 λ [度] 90 断層モデル原点緯度 [°N] 34.2156 断層モデル原点経度 [°E] 133.9131 断層モデル上端深さ D top [km] 2 断層モデル長さ L model [km] 32 断層モデル幅 W model [km] 18
走向 θ [度] 87.1 傾斜角 δ [度] 35 すべり角 λ [度] 90 断層モデル原点緯度 [°N] 34.2156 断層モデル原点経度 [°E] 133.9131 断層モデル上端深さ D_{top} [km] 2 断層モデル長さ L_{model} [km] 32 断層モデル幅 W_{model} [km] 18 微視的震源パラメータ
傾斜角 δ [度] 35 すべり角 λ [度] 90 断層モデル原点緯度 [°N] 34.2156 断層モデル原点経度 [°E] 133.9131 断層モデル上端深さ $D_{\rm top}$ [km] 2 断層モデル長さ $L_{\rm model}$ [km] 32 断層モデル幅 $W_{\rm model}$ [km] 18
すべり角 λ [度] 90 断層モデル原点緯度 [°N] 34.2156 断層モデル原点経度 [°E] 133.9131 断層モデル上端深さ D_{top} [km] 2 断層モデル長さ L_{model} [km] 32 断層モデル幅 W_{model} [km] 18 微視的震源パラメータ
すべり角 λ [度] 90 断層モデル原点緯度 [°N] 34.2156 断層モデル原点経度 [°E] 133.9131 断層モデル上端深さ D_{top} [km] 2 断層モデル長さ L_{model} [km] 32 断層モデル幅 W_{model} [km] 18 微視的震源パラメータ
断層モデル原点経度 [°E] 133.9131 断層モデル上端深さ $D_{\rm top}$ [km] 2 断層モデル長さ $L_{\rm model}$ [km] 32 断層モデル幅 $W_{\rm model}$ [km] 18 微視的震源パラメータ
断層モデル上端深さ D_{top} [km] 2 断層モデル長さ L_{model} [km] 32 断層モデル幅 W_{model} [km] 18 微視的震源パラメータ
断層モデル上端深さ D_{top} [km] 2 断層モデル長さ L_{model} [km] 32 断層モデル幅 W_{model} [km] 18 微視的震源パラメータ
断層モデル幅 W_{model} [km] 18 微視的震源パラメータ
微視的震源パラメータ
微視的震源パラメータ
毎国期レベル 4 DIm/a ² 1 1 20E±10
短周期レベル(参照) A _{Dan} [Nm/s ²] 1.39E+19
テ / 大州心力 Oa [IVIFA]
γ ス すべり量 $D_a[m]$ 2.00
プス すべり量 $D_a[m]$ 2.00 地震モーメント $M_{0a}[Nm]$ 7.27E+18
ア 面積 $S_{\rm al}$ [km ²] 77.5
ス 実効応力 σ _{a1} [MPa] 15.7
$1 \stackrel{\frown}{\parallel}$ すべり量 $D_{\rm al}$ [m] 2.22
ア 面積 S_{al} [km 2] 77.5 実効応力 σ_{al} [MPa] 15.7 すべり量 D_{al} [m] 2.22 地震モーメント M_{0al} [Nm] 5.37E+18
¹ 計算用面積 [km×km] 10 × 8
ア 面積 S _{a2} [km ²] 38.8
ス 宝効応力 σ 。 [MPa] 15.7
2°_{11} すべり量 D_{a2} [m] 1.57
ァ 地震モーメント M_{0a2} [Nm] 1.90E+18
イ 計算用面積 [km×km] 6 × 6
背 面積 S _b [km ²] 459.7
景 実効応力 σ _b [MPa] 2.6
領 すべり量 $D_{\rm h}$ [m] 0.75
域 地震モーメント M _{0b} [Nm] 1.07E+19

アスペリティと破壊開始点の配置図

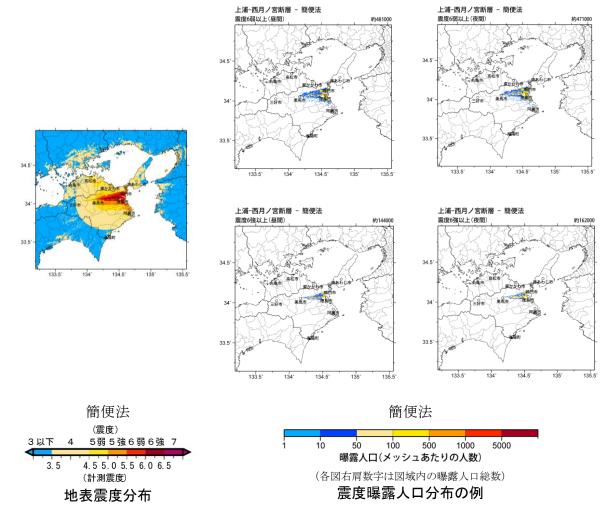


長尾断層帯 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 上法軍寺断層

強震動予測のための震源パラメータ(2018年版提示モデル)

巨視的震源パラメータ	
断層長さ <i>L</i> [km]	5
地震規模 <i>M</i>	6.8
地震発生層上限深さ H_{s} [km]	2
地震発生層下限深さ $H_{ m d}$ [km]	15
設定手順	(イ)
地震モーメント M_0 [Nm]	4.66E+18
モーメントマグニチュード <i>M</i> w	6.4
断層モデル面積 $S_{ m model}$ [km 2]	289
走向 θ [度]	286.8
傾斜角 δ [度]	45
断層モデル原点緯度 [°N]	34.2473
断層モデル原点経度 [°E]	133.9063
断層モデル上端深さ $D_{ m top}$ [km]	2
断層モデル長さ $L_{ m model}$ [km]	17
断層モデル幅 $W_{ m model}$ [km]	17

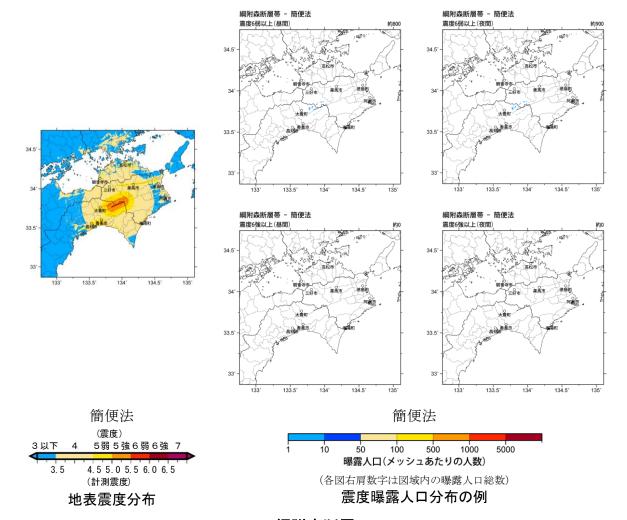


上法軍寺断層 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 上浦一西月ノ宮断層

強震動予測のための震源パラメータ (2018 年版提示モデル)

巨視的震源パラメータ	
断層長さ <i>L</i> [km]	10
地震規模 <i>M</i>	6.8
地震発生層上限深さ H_{s} [km]	2
地震発生層下限深さ $H_{ m d}$ [km]	15
設定手順	(イ)
地震モーメント M_0 [Nm]	4.66E+18
モーメントマグニチュード <i>M</i> _w	6.4
断層モデル面積 $S_{ m model}$ $[{ m km}^2]$	285
走向 θ [度]	267.9
傾斜角 δ [度]	90
断層モデル原点緯度 [°N]	34.0500
断層モデル原点経度 [°E]	134.4783
断層モデル上端深さ $D_{ m top}$ [km]	2
断層モデル長さ $L_{ m model}$ [km]	15
断層モデル幅 $W_{ m model}$ [km]	19



上浦一西月ノ宮断層 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 綱附森断層

強震動予測のための震源パラメータ(2018年版提示モデル)

巨視的震源パラメータ	
断層長さ <i>L</i> [km]	14
地震規模 M	6.8
地震発生層上限深さ H_{s} [km]	2
地震発生層下限深さ $H_{ m d}$ [km]	15
設定手順	(イ)
地震モーメント M_0 [Nm]	4.66E+18
モーメントマグニチュード <i>M</i> _w	6.4
断層モデル面積 $S_{ m model}$ [km 2]	285
走向 θ [度]	245.8
傾斜角 δ [度]	90
断層モデル原点緯度 [°N]	33.8367
断層モデル原点経度 [°E]	134.0283
断層モデル上端深さ $D_{ m top}$ [km]	2
断層モデル長さ $L_{ m model}$ [km]	15
断層モデル幅 $W_{ m model}$ [km]	19

綱附森断層 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)