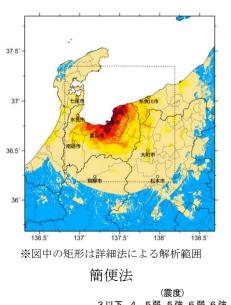
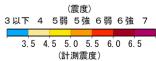
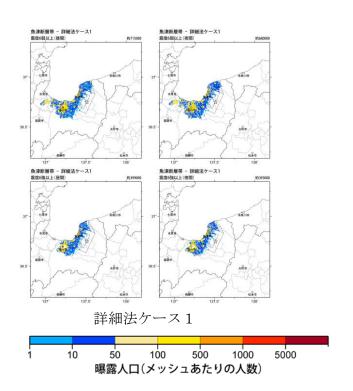

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 魚津断層帯

※地震モーメントの値はレシピ通りで微視的パラメータを設定したモデル


巨視的震源パラメータ	設定方法	711111	不動堂断層
断層モデル原点	地中の上端における屈曲点	北緯 36.877° 東経 137.491°	
走向 θ	長期評価の端点を結ぶ方向	東産 1. N205.0°E	57.491 N68.0°E
傾斜角 δ	「南東傾斜」	137°	43°
すべり角 γ	「南東側隆起の逆断層」	90°	90°
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	3 km	3 km
単位区間長さ L_{seg}	手続き化の方法に従い設定	24 km	10 km
単位区間幅 W _{seg}	手続き化の方法に従い設定	18 km	18 km
単位区間面積 S_{seg}	$S_{\text{seg}} = L_{\text{seg}} \times W_{\text{seg}}$	432 km^2	180 km^2
断層モデル総面積 $S_{ m model}$	$S_{\text{model}} = \Sigma S_{\text{seg}}$	612	
地震モーメント M_0	$\log M_0 = 1.17M + 10.72$	2.04E+19	
モーメントマグニチュード M_{w}	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.	-
静的応力降下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot M_0 / R^3$		MPa
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	1.1	
短周期レベルA	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	1.45E+19	Nm/s ²
微視的震源パラメータ		ケー	
全アスペリティ面積 S_a	$Sa = \pi r^2, r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	128.7 km^2	
全アスペリティの実効応力 σ_a	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$	15.6 MPa 魚津断層 不動堂断層	
単位区間ごとの微視的震源パラ単位区間地震モーメント Moses		無準断層 1.61E+19 Nm	不動堂断層
単位区間地震モーメンド M_{0seg} 単位区間平均すべり量 D_{seg}	単位区間面積の1.5乗に比例して配分	1.61E+19 Nm 1.2 m	4.33E+18 Nm 0.8 m
中位と同十のサイク量 D seg	$D_{\text{seg}} = M_{0\text{seg}} / (\mu \cdot S_{\text{seg}})$ 魚津断層のみに配分	1.2 III 128.7 km ²	U.8 III —
	$D_{\text{a seg}} = \gamma_{\text{D}} \cdot D_{\text{seg}}, \gamma_{\text{D}} = 2.0$	2.4 m	_
F 平均すべり重 $D_{a \text{ seg}}$ 実効応力 $\sigma_{a \text{ seg}}$	$\sigma_{\text{a seg}} = \sigma_{\text{B}}$ $\sigma_{\text{a seg}} = \sigma_{\text{a}}$	15.6 MPa	_
や 地震モーメント $M_{0a \text{ seg}}$	$M_{0a \text{ seg}} = \mu \cdot D_{a \text{ seg}} \cdot S_{a \text{ seg}}$	9.64E+18 Nm	_
ペ第 面積 S _{al}	$S_{a1} = S_{a \text{ seg}}$	128.7 km^2	_
リ 1 平均すべり量 D _{al}	$D_{a1} = (\gamma_1/\Sigma \gamma_i^3) \cdot D_{a \text{ seg}}$	2.4 m	_
テア 実効応力 σ _{al}	$\sigma_{\rm al} = \sigma_{\rm a seg}$	15.6 MPa	_
イス計算用面積	2km メッシュサイズ	128 km^2	_
ペ第 面積 S _{a2}	$S_{a2} = 0$	_	_
リ 2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_{a \text{ sec}}$	_	_
テア 実効応力 σ_{a2}	$\sigma_{a2} = \sigma_{a \text{ seg}}$	_	_
イス計算用面積	2km メッシュサイズ	_	_
電積 S _b でわせべい 是 D	$S_{b} = S_{\text{seg}} - S_{a \text{ seg}}$	303.3 km^2	180.0 km^2
中の 9 *	$D_b = M_{0b} / (\mu \cdot S_b)$	0.7 m	0.8 m
$_{\rm GI}$ 美郊応刀 $\sigma_{\rm b}$	$\sigma_{\rm h} = (D_{\rm h}/W_{\rm h seo}) \cdot (\pi^{1/2}/D_{\rm a seo}) \cdot r \cdot \Sigma \gamma_{\rm i}^{3} \cdot \sigma_{\rm s}$		3.3 MPa
域 地震モーメント M _{0b}	$M_{0b} = M_{0\text{seg}} - M_{0a \text{ seg}}$	6.45E+18 Nm	4.33E+18 Nm
計算用面積	2km メッシュサイズ	304 km^2	48 km^2



アスペリティと破壊開始点の配置図

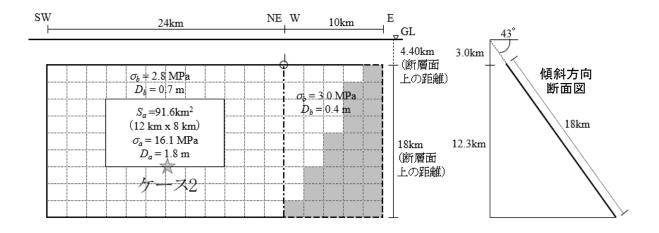


詳細法ケース1

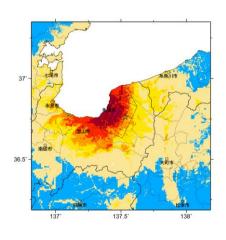
地表震度分布

(各図右肩数字は図域内の曝露人口総数)

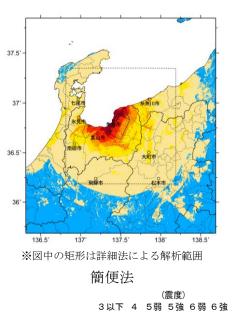
震度曝露人口分布の例

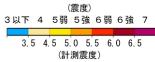

魚津断層帯

※地震モーメントの値はレシピ通りで微視的パラメータを設定したモデル **震源断層を特定した地震動予測地図(シナリオ地震動予測地図**)

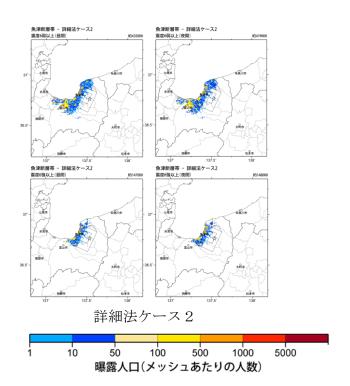

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 魚津断層帯

※面積が重なった分の地震モーメントを小さくして微視的パラメータを求めたモデル 強震動予測のための震源パラメータ (2014 年版に基づく再算定モデル)


巨視的震源パラメータ	「長期評価」または設定方法	7	投定値	
活断層長さ L	約32km		32 km	
マグニチュード M	7.3程度		7.3	
巨視的震源パラメータ	設定方法	魚津断層	不動堂師	折層
断層モデル原点	地中の上端における尿曲点	北道	≇ 36.877°	
断層モデル原点	地中の上端にわける脳曲点	東海	₹137.491°	
走向 θ	長期評価の端点を結ぶ方向	N205.0°E	N68.0	°E
傾斜角 δ	「南東傾斜」	137°	43°	
すべり角 γ	「南東側隆起の逆断層」	90°	90°	
断層モデル上端源さ	微小地震の発生と地震基盤源さを参考		1 3	
単位区間長さ <i>L</i> seg	手続き化の方法に従い設定	24 km		km
単位区間幅 W_{seg}	手続き化の方法に従い設定	18 km	n 18	km
単位区間面積 Sseg	$S_{\text{seg}} = L_{\text{seg}} \times W_{\text{seg}}$	432 km	² 180	km²
重複除去の単位区間面積 Sacg	-	432.0 lar	59.1	km²
断層モデル総面積 Smodel	$S_{\text{model}} = \Sigma S_{\text{seg}}$	6	12 km ²	
地震モーメント Mo	$\log M_0 = 1.17M + 10.72$	2.04E+	19 Nm	
モーメントマグニチュード M _w	$M_w = (\log M_0 - 9.1)/1.5$		6.8	
重複除去の断層面積 Smodel	$S_{\text{model}} = \Sigma S_{\text{seg}}$	491	.1 km ²	
重複除去の地震モーメント Mo!	$M_0' = \{S_{\text{mode}} / (4.24 \times 10^{7/2}) \times 10^{-11} \}^2$	1.34E+	19 Nm	
重複除去のモーメントマグニチュード M。		1	6.7	
静的応力隆下量 Δσ	$\Delta \sigma = 7/16 \cdot M_0 / R^3$	3.	.0 MPa	
平均すべり量 D model	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$		9 m	
短周期レベル A	$A = 2.46 \cdot 10^{10} \cdot (M_0 \cdot 10^7)^{1/3}$	-	19 Nm/s ²	
微視的震源パラメータ	21 - 2.40 10 (12) 10)		z 2	
全アスペリティ面積 5。	$S_n = \pi r^2, r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$.6 km²	
全プスペリティの実効応力 σ。	$\sigma_n = \Delta \sigma_n = 7/16 \cdot M_0 / (r^2 \cdot R)$.1 MPa	
単位区間ごと	01 - 201 - 710 M1 (V - IC)		不動堂師	折層
単位区間地震モーメント Moseg	単位区間面積の1.5乗に比例して配分		n 6.46E+17	
単位区間平均すべり量 Д 👊	$D_{\text{seg}} = M_{0\text{seg}} / (\mu \cdot S_{\text{seg}})$	0.9 m	-	
全 面積 S _{1,202}	単位区間面積に比例して配分	91.6 km		-
リア 平均すべり量 D ****	$D_{a,seg} = \gamma_D \cdot D_{seg}, \ \gamma_D = 2.0$	1.8 m	- !	
ティス 実効応力 σ _{8,208}	$\sigma_{a \text{ sca}} = \sigma_{a}$	16.1 M	_ i	
地震モーメント Moa seg	$M_{0a_seg} = \mu \cdot D_{a_seg} \cdot S_{a_seg}$	5.15E+18 Nr		
べ 第 面積 S _{al}	$S_{a1} = S_{a \text{ sea}} \cdot (2/3) \text{ or } S_{a \text{ sea}}$	91.6 km		
リ1平均すべり量 Dai	$D_{a1} = (\gamma_1/\Sigma \gamma_1^3) \cdot D_a \text{ seg}$	1.8 m		
テァ 実効応力 σ ₈₁	$\sigma_{a1} = (\gamma_1 \gamma_2 \gamma_1) D_{a} \text{seg}$ $\sigma_{a1} = \sigma_{a, \text{seg}}$	16.1 M	_	
イス計算用面積	2km メッシュサイズ	96 km		
野界用画像 水 第 面積 S _{a2}	$S_{n2} = S_{n, \text{seg}} \cdot (1/3) \text{ or } 0$	- 30 km		
ベ 第 <u>回復 3×2</u> リ 2 平均すべり量 D×2	$D_{s2} = \left(\frac{\gamma_2}{\Sigma} \gamma_i^3\right) \cdot D_{s = seg}$	1		
テァ 実効応力 σ _{1.2}			-	
イス 計算用面積	$\sigma_{n2} = \sigma_{n,seg}$ There is a set of the	+ -		
	2km メッシュサイズ		2	. 2
面積 Sb でわせいり	$S_b = S_{seg} - S_{s_seg}$	340.4 km		
- 一十級リベリ重力6	$D_b = M_{0b} / (\mu \cdot S_b)$	0.7 m		
領 美効応力 の	$\sigma_b = (D_b/W_{b_seg}) \cdot (\pi^{1/2}/D_{a_seg}) \cdot r \cdot \Sigma \gamma_i^3 \cdot \sigma_{a_seg}$	2.8 M		MPa
域 地震モーメント M 05	$M_{0b} = M_{0 \text{seg}} \cdot M_{0 \text{a} \text{seg}}$		n 6.46E+17	
計算用面積	2km メッシュサイズ	336 lov	² 76	1cm2



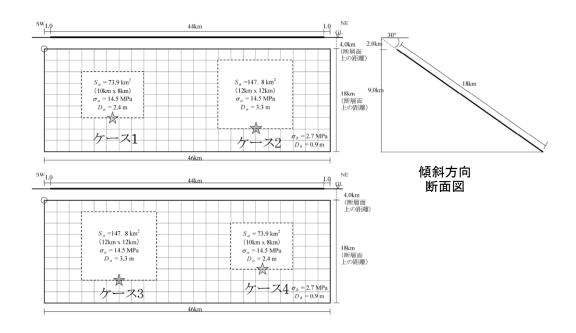
アスペリティと破壊開始点の配置図



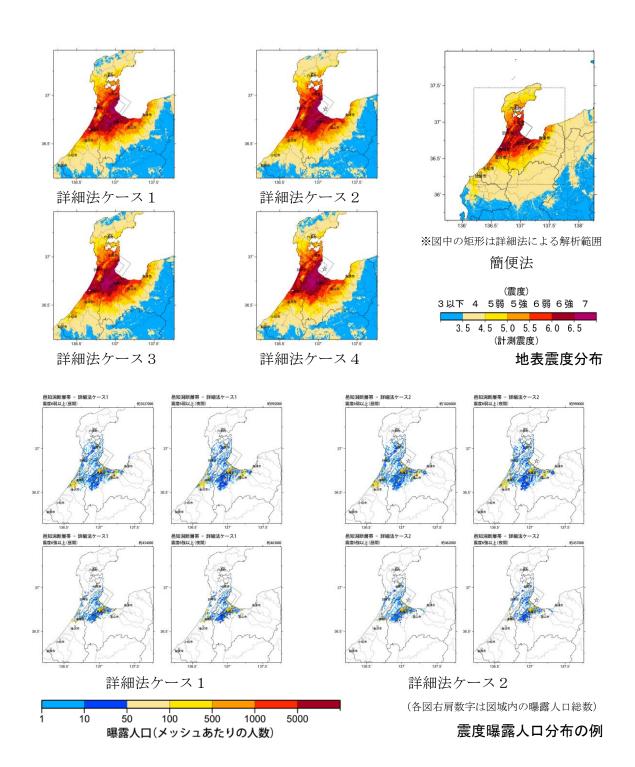
詳細法ケース2

地表震度分布

(各図右肩数字は図域内の曝露人口総数)

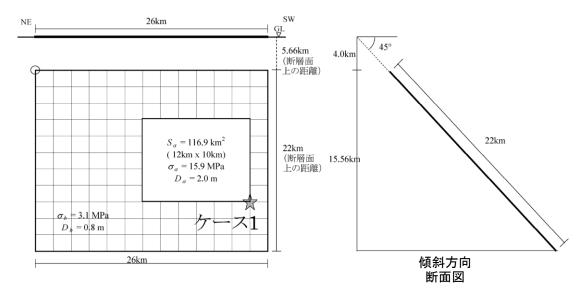

震度曝露人口分布の例

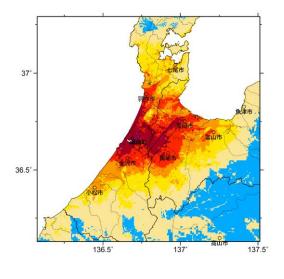
魚津断層帯


※面積が重なった分の地震モーメントを小さくして微視的パラメータを求めたモデル 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

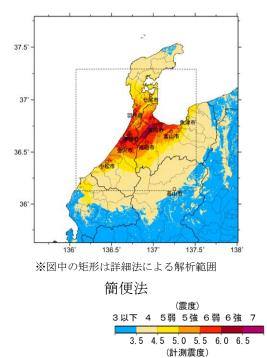
震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 邑知潟断層帯

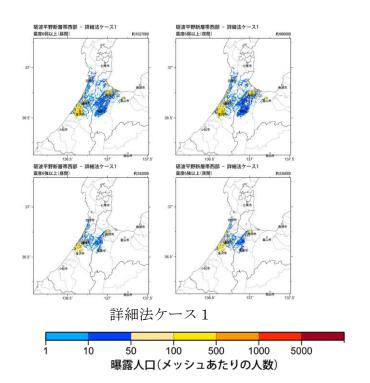
巨視的震源パラメータ	設定方法	
断層モデル原点	地中の上端における南西端	北緯 36.675°
		東経 136.758°
走向 θ	長期評価の端点を結ぶ方向	N35.7°E
傾斜角 δ	「約30°南東傾斜」	30°
すべり角 γ	「南東側隆起の逆断層」	90°
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	2 km
断層モデル長さ $L_{ m model}$	手続き化の方法に従い設定	46 km
断層モデル幅 W_{model}	手続き化の方法に従い設定	18 km
断層モデル面積 $S_{ m model}$	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	828 km ²
地震モーメント M_0	$\log M_0 = 1.17M + 10.72$	3.80E+19 Nm
モーメントマグニチュード M w		7.0
静的応力降下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot M_0/R^3$	3.9 MPa
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	1.5 m
短周期レベル A	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	$1.78E+19 \text{ Nm/s}^2$
微視的震源パラメータ		ケース 1 ~ 4
\prod_{ij} 全 面積 S_a	$S_a = \pi r^2$, $r = 7\pi / 4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	221.7 km^2
$\begin{bmatrix} y \\ z \end{bmatrix}$ 平均すべり量 D_a	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \ \gamma_{\rm D} = 2.0$	3.0 m
7 - JC/93/LLT/J Oa	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0/(r^2 \cdot R)$	14.5 MPa
ペ 地震モーメント M _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$	2.08E+19 Nm
ペ第 面積 S _{al}	$S_{a1} = S_a \cdot (2/3)$	147.8 km ²
リ 1 平均すべり量 <i>D</i> al	$D_{a1} = (\gamma_1/\Sigma\gamma_i^3) \cdot D_a$	3.3 m
テア 実効応力 $\sigma_{ m al}$	$\sigma_{\rm al} = \sigma_{\rm a}$	14.5 MPa
イス計算用面積	2km メッシュサイズ	144 km^2
ペ第 面積 S _{a2}	$S_{a2} = S_a \cdot (1/3)$	73.9 km^2
リ 2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2/\Sigma \gamma_i^3) \cdot D_a$	2.4 m
テア 実効応力 σ_{a2}	$\sigma_{\rm a2} = \sigma_{\rm a}$	14.5 MPa
イス 計算用面積	2km メッシュサイズ	80 km^2
電積 S _b でわまべり 是 D	$S_{\rm b} = S_{\rm model} - S_{\rm a}$	606.3 km^2
T T T D D D	$D_{b} = M_{0b} / (\mu \cdot S_{b})$	0.9 m
$_{\text{G}}$ 天郊心刀 σ_{b}	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^3 \cdot \sigma_{\rm a}$	2.7 MPa
域 地震モーメント M _{0b}	$M_{0b} = M_0 - M_{0a}$	1.72E+19 Nm
計算用面積	2km メッシュサイズ	604 km^2


アスペリティと破壊開始点の配置図


邑知潟断層帯 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

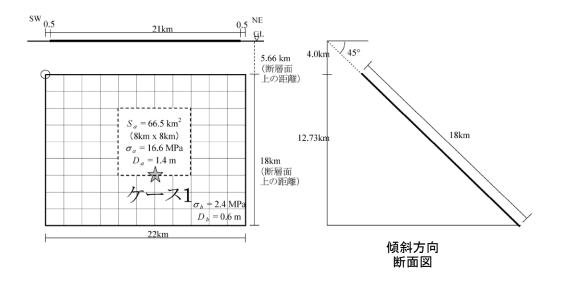
震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 砺波平野断層帯西部


巨視的震源パラメータ	設定方法	
断層モデル原点	地中の上端における北端	北緯 36.752°
四層 ピノ /レ/示点	16十07上5間(これ)(2010)	東経 136.957°
走向 θ	長期評価の端点を結ぶ方向	N220.0°E
傾斜角 δ	強震動評価に基づく	45°
すべり角 γ	「北西側隆起の断層」	90°
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	4 km
断層モデル長さ L_{model}	強震動評価に基づく	26 km
断層モデル幅 $W_{ m model}$	強震動評価に基づく	22 km
断層モデル面積 S_{model}	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	572 km^2
地震モーメント M_0	$M_0 = (S/4.24 \times 10^{11})^2 \times 10^{-7}$	1.82E+19 Nm
モーメントマグニチュード M w	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.8
静的応力降下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot M_0/R^3$	3.2 MPa
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	1.0 m
短周期レベル A	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	$1.39E+19 \text{ Nm/s}^2$
微視的震源パラメータ		ケース 1
」全面積Sa	$S_a = \pi r^2, r = 7\pi / 4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	116.9 km^2
$ \stackrel{\cdot}{\subseteq} r $ 半均すべり量 D_a	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \ \gamma_{\rm D} = 2.0$	2.0 m
r ス 実効応力 σ_a	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0/(r^2 \cdot R)$	15.9 MPa
^ 地震モーメント <i>M</i> _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$	7.30E+18 Nm
ペ第 面積 S _{al}	$S_{a1} = S_a$	116.9 km^2
リ 1 平均すべり量 D _{al}	$D_{a1} = (\gamma_1/\Sigma\gamma_i^3) \cdot D_a$	2.0 m
テア 実効応力 $\sigma_{\rm al}$	$\sigma_{\rm al} = \sigma_{\rm a}$	15.9 MPa
イス 計算用面積	2km メッシュサイズ	120 km^2
ペ第 面積 S a2	$S_{a2} = 0$	_
リ 2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2/\Sigma \gamma_i^3) \cdot D_a$	_
テア 実効応力 σ_{a2}	$\sigma_{a2} = \sigma_a$	_
イス計算用面積	2km メッシュサイズ	_
all 面積 S _b	$S_b = S_{\text{model}} - S_a$	455.1 km^2
背 平均すべり量 D b	$D_{b} = M_{0b} / (\mu \cdot S_{b})$	0.8 m
α 天外ルンノノ σ_b	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^3 \cdot \sigma_{\rm a}$	3.1 MPa
_域 地震セーメント M _{0b}	$M_{0\mathrm{b}} = M_0$ - $M_{0\mathrm{a}}$	1.09E+19 Nm
計算用面積	2km メッシュサイズ	452 km^2

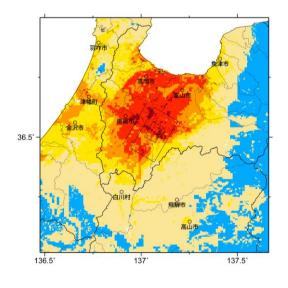

アスペリティと破壊開始点の配置図

詳細法ケース1

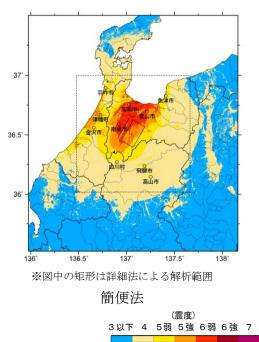
地表震度分布

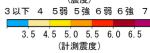


(各図右肩数字は図域内の曝露人口総数)

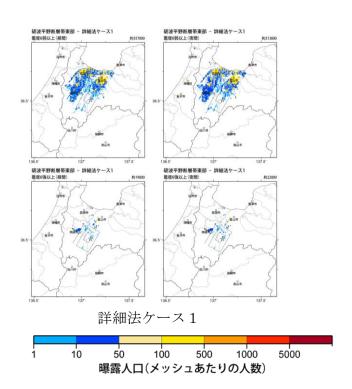

震度曝露人口分布の例

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 砺波平野断層帯東部


巨視的震源パラメータ	設定方法	
断層モデル原点	地中の上端における南端	北緯 36.453°
		東経 136.945°
走向 θ	長期評価の端点を結ぶ方向	N30.0°E
傾斜角 δ	「南東傾斜」	45°
すべり角 γ	「南東側隆起の断層」	90°
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	4 km
断層モデル長さ $L_{ m model}$	手続き化の方法に従い設定	22 km
断層モデル幅 $W_{ m model}$	手続き化の方法に従い設定	18 km
断層モデル面積 S_{model}	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	396 km^2
地震モーメント M_0	$\log M_0 = 1.17M + 10.72$	8.98E+18 Nm
モーメントマグニチュード M _w	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.6
静的応力降下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot M_0/R^3$	2.8 MPa
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	0.7 m
短周期レベル A	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	$1.10E+19 \text{ Nm/s}^2$
微視的震源パラメータ		ケース1
全 面積 S _a	$S_a = \pi r^2, r = 7\pi /4 \cdot M_0 /(A \cdot R) \cdot \beta^2$	66.5 km^2
$\begin{bmatrix} y \\ z \end{bmatrix}$ 平均すべり量 D_a	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \ \gamma_{\rm D} = 2.0$	1.4 m
$\int_{-\pi}^{\pi}$ ス 実効応力 σ_a	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0/(r^2 \cdot R)$	16.6 MPa
ペ 地震モーメント M _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{a1} = S_a$	2.91E+18 Nm
ペ第 面積 S _{al}		66.5 km^2
リ 1 平均すべり量 <i>D</i> _{al}	$D_{\rm al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_{\rm a}$	1.4 m
テア 実効応力 σ_{al}	$\sigma_{\rm al} = \sigma_{\rm a}$	16.6 MPa
イス計算用面積	2km メッシュサイズ	64 km^2
ペ第 面積 S _{a2}	$S_{a2} = 0$	_
リ 2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_a$	_
テア 実効応力 σ_{a2}	$\sigma_{\rm a2} = \sigma_{\rm a}$	_
イス 計算用面積	2km メッシュサイズ $S_b = S_{\text{model}} - S_a$	_
T 面積 S _b 平均すべり量 D		329.5 km^2
	$D_b = M_{0b} / (\mu \cdot S_b)$	0.6 m
$_{\rm a}$ 天郊心刀 $\sigma_{\rm b}$	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^{3} \cdot \sigma_{\rm a}$	2.4 MPa
域 地震セーメント M _{0b}	$M_{0\mathrm{b}} = M_0$ - $M_{0\mathrm{a}}$	6.07E+18 Nm
計算用面積	2km メッシュサイズ	332 km^2

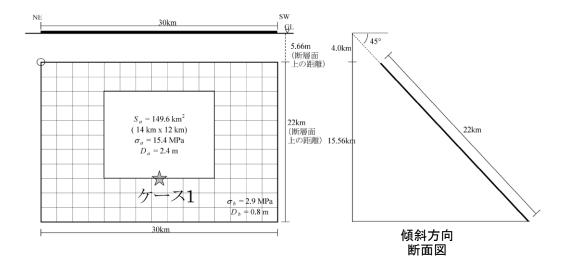


アスペリティと破壊開始点の配置図

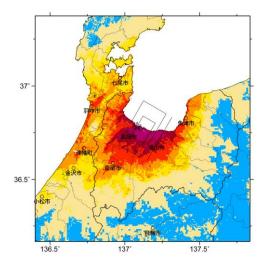


詳細法ケース1

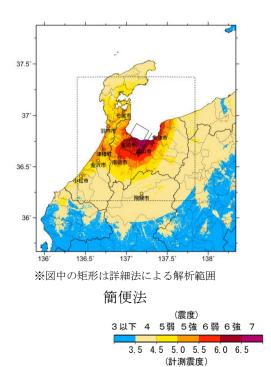
地表震度分布

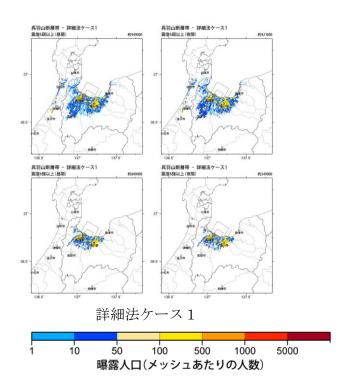

(各図右肩数字は図域内の曝露人口総数)

震度曝露人口分布の例


砺波平野断層帯東部 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

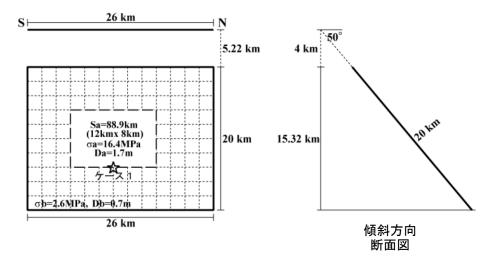
震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 呉羽山断層帯


巨視的震源パラメータ	設定方法	
断層モデル原点	地中の上端における北端	北緯 36.851°
		東経 137.276°
走向 0	長期評価の端点を結ぶ方向	N210.0°E
傾斜角 δ	強震動評価に基づく	45°
すべり角 γ	「北西側隆起の断層」	90°
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	4 km
断層モデル長さ $L_{ m model}$	強震動評価に基づく	30 km
断層モデル幅 $W_{ m model}$	強震動評価に基づく	22 km
断層モデル面積 $S_{ m model}$	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	660 km^2
地震モーメント M_0	$M_0 = (S/4.24 \times 10^{11})^2 \times 10^{-7}$	2.42E+19 Nm
モーメントマグニチュード M _v	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.9
静的応力降下量 $\Delta\sigma$	$\Delta \sigma = 7/16 \cdot M_0/R^3$	3.5 MPa
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	1.2 m
短周期レベル A	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	$1.53E+19 \text{ Nm/s}^2$
微視的震源パラメータ		ケース 1
$_{11}$ 全 面積 S_a	$S_a = \pi r^2, r = 7\pi /4 \cdot M_0 /(A \cdot R) \cdot \beta^2$	149.6 km ²
リア 平均すべり量 Da	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \ \gamma_{\rm D} = 2.0$	2.4 m
$ \gamma \rangle$ 実効応力 σ_a	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0/(r^2 \cdot R)$	15.4 MPa
ペ 地震モーメント <i>M</i> _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$	1.12E+19 Nm
ペ第 面積 S _{al}	$S_{a1} = S_a$	149.6 km^2
リ 1 平均すべり量 <i>D</i> al	$D_{a1} = (\gamma_1/\Sigma \gamma_i^3) \cdot D_a$	2.4 m
テア 実効応力 σ_{al}	$\sigma_{ m al} = \sigma_{ m a}$	15.4 MPa
イス計算用面積	2km メッシュサイズ	168 km^2
ペ第 面積 S _{a2}	$S_{a2} = 0$	_
リ 2 平均すべり量 D a2	$D_{a2} = (\gamma_2/\Sigma \gamma_i^3) \cdot D_a$	_
テア 実効応力 σ_{a2}	$\sigma_{\rm a2} = \sigma_{\rm a}$	_
イス 計算用面積	2km メッシュサイズ	_
□ 面積 S _b	$S_b = S_{\text{model}} - S_a$	510.4 km^2
背 平均すべり量D _b	$D_{\rm b} = M_{0\rm b} / (\mu \cdot S_{\rm b})$	0.8 m
景 実効応力 σ _b	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^{3} \cdot \sigma_{\rm a}$	2.9 MPa
域 地震モーメント M _{0b}	$M_{0b} = M_0 - M_{0a}$	1.30E+19 Nm
計算用面積	2km メッシュサイズ	492 km^2

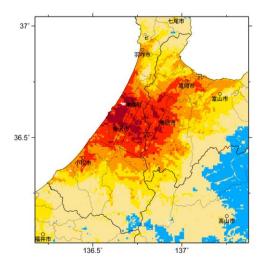

アスペリティと破壊開始点の配置図

詳細法ケース1

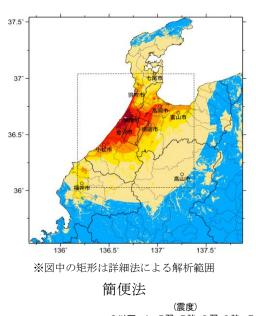
地表震度分布

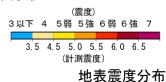


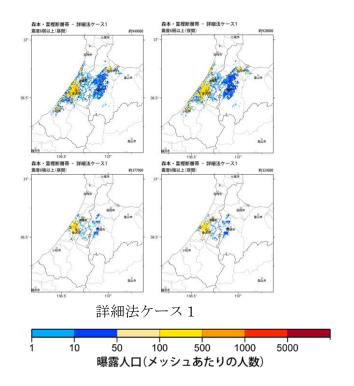
(各図右肩数字は図域内の曝露人口総数)


震度曝露人口分布の例

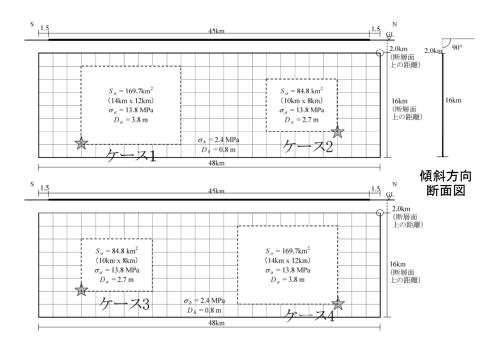
震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 森本・富樫断層帯


	モデル原点	地中の上端における南端		6.4535°
的//自	C / / P////	2回:1-42 丁河((C421) -2) 山が川	東経 136.6505°	
走向	θ	長期評価の端点を結ぶ方向	N25	5.7°E
傾斜角	有 δ	「東傾斜40-60°程度」	5	0°
すべり)角γ	「東側隆起の逆断層」	9	0°
断層さ	モデル上端深さ	微小地震の発生と地震基盤深さを参考	4	km
断層さ	モデル長さ $L_{ m model}$	手続き化の方法に従い設定	26	km
断層=	モデル幅 $W_{ m model}$	手続き化の方法に従い設定	20	km
断層-	モデル面積 S_{model}	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	520	km ²
地震さ	モーメント Mo	$\log M_0 = 1.17M + 10.72$	1.36E+19	Nm
モー	メントマグニチュード $M_{ m w}$	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.	7
静的原	芯力降下量 $\Delta\sigma$	$\Delta \sigma = 7/16 \cdot M_0/R^3$	2.8	M Pa
平均。	ナベり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	0.8	m
短周期	朝レベル <i>A</i>	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	1.27E+19	Nm/s ²
	微視的震源パラメータ	設定方法	ケー	・ス 1
全	面積 S _a	$S_a = \pi r^2$, $r = 7\pi / 4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	88.9	km ²
	平均すべり量Da	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \gamma_{\rm D} = 2.0$	1.7	m
ィス	実効応力 σ_a	$\sigma_{\rm a} = \Delta \sigma_{\rm a} = 7/16 \cdot M_0/(r^2 \cdot R)$	16.4	M Pa
~	地震モーメント M_{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$	4.66E+18	Nm
ペ第	面積 Sal	$S_{a1} = S_a$	88.9	km ²
	平均すべり量 <i>D</i> _{a1}	$D_{a1} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a$	1.7	m
テア	実効応力 σ_{a1}	$\sigma_{a1} = \sigma_a$	16.4	M Pa
イス	計算用面積	2km メッシュサイズ	96	km ²
ペ第	面積 S _{a2}	$S_{a2} = 0$	-	_
	平均すべり量 D _{a2}	$D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_a$	-	_
テア	実効応力 σ_{a2}	$\sigma_{a2} = \sigma_a$	-	_
イス	計算用面積	2km メッシュサイズ	-	_
-114	面積 S _b	$S_b = S_{\text{model}} - S_a$	431.1	km ²
背見	平均すべり量 D_b	$D_{b} = M_{0b} / (\mu \cdot S_{b})$	0.7	m
景領	実効応力 σ_b	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b})/(D_{\rm a}/W_{\rm a}) \cdot \sigma_{\rm a}$	2.6	M Pa
域	地震モーメント M _{0b}	$M_{0b} = M_0 - M_{0a}$	8.97E+18	Nm
	計算用面積	2km メッシュサイズ	424	km ²

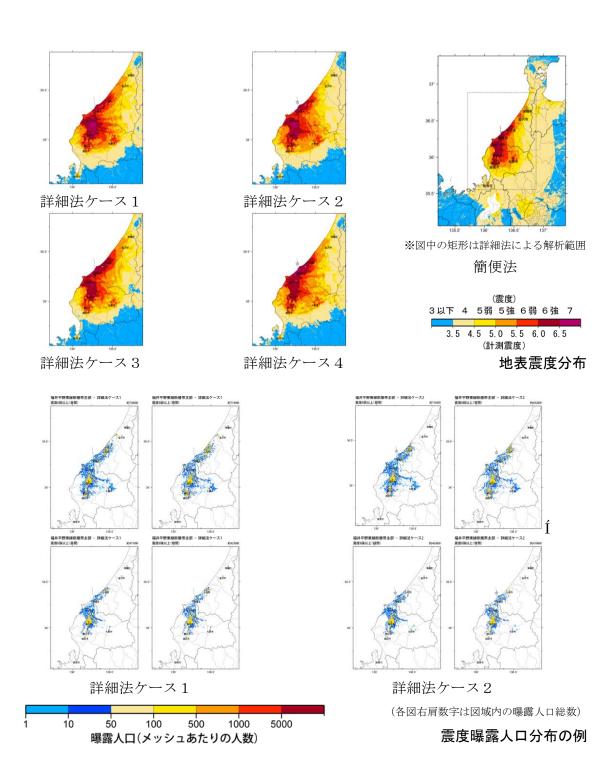



アスペリティと破壊開始点の配置図

詳細法ケース1

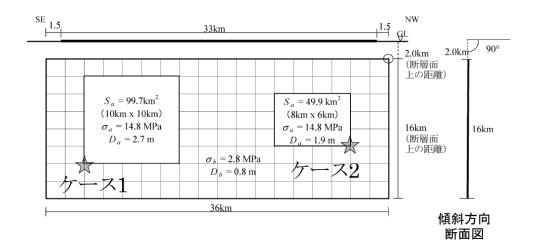

(各図右肩数字は図域内の曝露人口総数)

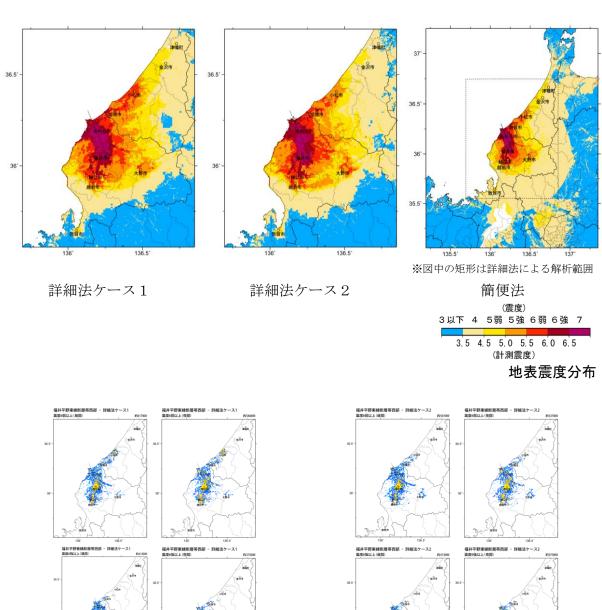
震度曝露人口分布の例


森本・富樫断層帯 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 福井平野東縁断層帯主部

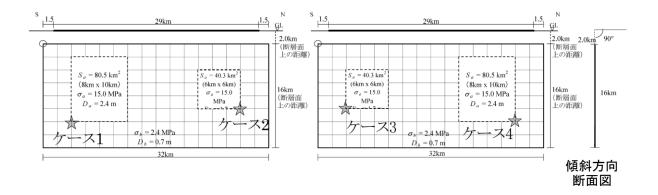
巨視的震源パラメータ	設定方法	
断層モデル原点	地中の上端における北端	北緯 36.434°
		東経 136.266°
走向 6	長期評価の端点を結ぶ方向	N174.4°E
傾斜角 δ	「50°東傾斜-ほぼ垂直」	90°
すべり角 γ	「左横ずれ、かつ東側隆起の逆断層」	0°
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	2 km
断層モデル長さ L_{model}	手続き化の方法に従い設定	48 km
断層モデル幅 W_{model}	手続き化の方法に従い設定	16 km
断層モデル面積 $S_{ m model}$	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	768 km^2
地震モーメント M_0	$\log M_0 = 1.17M + 10.72$	3.97E+19 Nm
モーメントマグニチュード M w	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	7.0
静的応力降下量 $\Delta\sigma$	$\Delta \sigma = 7/16 \cdot M_0/R^3$	4.6 MPa
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	1.7 m
短周期レベル A	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	$1.81E+19 \text{ Nm/s}^2$
微視的震源パラメータ 全 面積 S _a		ケース1~4
$_{11}$ 全 面積 S_a	$S_a = \pi r^2$, $r = 7\pi / 4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	254.5 km^2
プァ 平均すべり量 Da	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \ \gamma_{\rm D} = 2.0$	3.4 m
7 - Xyj/Li/j Ua	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0/(r^2 \cdot R)$	13.8 MPa
ペ 地震モーメント <i>M</i> _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$	2.70E+19 Nm
ペ第 面積 S _{al}	$S_{a1} = S_a \cdot (2/3)$	169.7 km^2
リ 1 平均すべり量 <i>D</i> al	$D_{a1} = (\gamma_1/\Sigma \gamma_i^3) \cdot D_a$	3.8 m
テア 実効応力 σ_{al}	$\sigma_{ m al} = \sigma_{ m a}$	13.8 MPa
イス 計算用面積	2km メッシュサイズ	168 km^2
ペ第 面積 S _{a2}	$S_{a2} = S_a \cdot (1/3)$	84.8 km^2
リ 2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_a$	2.7 m
テア 実効応力 σ_{a2}	$\sigma_{\rm a2} = \sigma_{\rm a}$	13.8 MPa
イス 計算用面積	2km メッシュサイズ	80 km^2
電積 S _b でわまべり 是 D	$S_b = S_{\text{model}} - S_a$	513.5 km^2
p 下のリーリ 里 D b	$D_{\rm b} = M_{\rm 0b} / (\mu \cdot S_{\rm b})$	0.8 m
α 大郊心刀 σ_b	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^3 \cdot \sigma_{\rm a}$	2.4 MPa
地震モーメント M_{0b}	$M_{0b} = M_0 - M_{0a}$	1.27E+19 Nm
計算用面積	2km メッシュサイズ	520 km^2

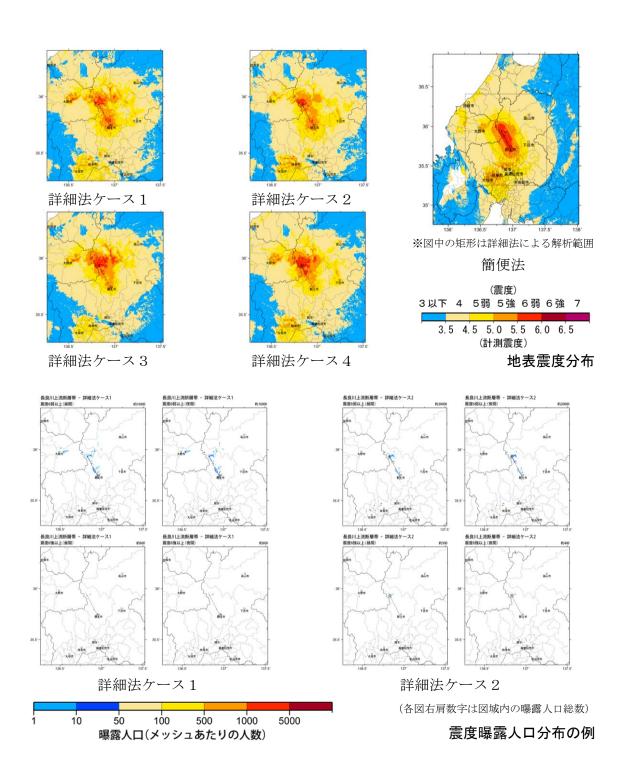

アスペリティと破壊開始点の配置図


福井平野東縁断層帯主部 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 福井平野東縁断層帯西部

巨視的震源パラメータ	設定方法	
断層モデル原点	地中の上端における北西端	北緯 36.303°
		東経 136.132°
走向 θ	長期評価の端点を結ぶ方向	N156.8°E
傾斜角 δ	「高角,東傾斜-ほぼ垂直」	90°
すべり角 γ	「左横ずれ断層」	0°
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	2 km
断層モデル長さ $L_{ m model}$	手続き化の方法に従い設定	36 km
断層モデル幅 $W_{ m model}$	手続き化の方法に従い設定	16 km
断層モデル面積 $S_{ m model}$	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	576 km ²
地震モーメント M_0	$\log M_0 = 1.17M + 10.72$	2.17E+19 Nm
モーメントマグニチュード M_{w}	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.8
静的応力降下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot M_0/R^3$	3.9 MPa
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	1.2 m
短周期レベル A	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	$1.48E+19 \text{ Nm/s}^2$
微視的震源パラメータ		ケース1~2
$_{11}$ 全 面積 S_a	$S_{a} = \pi r^{2}, r = 7\pi / 4 \cdot M_{0} / (A \cdot R) \cdot \beta^{2}$	149.6 km ²
リア 平均すべり量 Da	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \ \gamma_{\rm D} = 2.0$	2.4 m
$ _{\gamma} \wedge $ 美剱応刀 $\sigma_{\rm a}$	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0/(r^2 \cdot R)$	14.8 MPa
ペ 地震モーメント <i>M</i> _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{a1} = S_a \cdot (2/3)$	1.12E+19 Nm
ペ第 面積 S_{al}	$S_{a1} = S_a \cdot (2/3)$	99.7 km^2
リ 1 平均すべり量 <i>D</i> al	$D_{\rm al} = (\gamma_1/\Sigma \gamma_i^3) \cdot D_{\rm a}$	2.7 m
テア 実効応力 σ_{al}	$\sigma_{\rm al} = \sigma_{\rm a}$	14.8 MPa
イス 計算用面積	2km メッシュサイズ	100 km^2
ペ第 面積 S _{a2}	$S_{a2} = S_a \cdot (1/3)$	49.9 km^2
リ 2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2/\Sigma\gamma_i^3) \cdot D_a$	1.9 m
テア 実効応力 σ_{a2}	$\sigma_{\rm a2} = \sigma_{\rm a}$	14.8 MPa
イス計算用面積	2km メッシュサイズ	48 km^2
電積 S_b	$S_{\rm b} = S_{\rm model} - S_{\rm a}$	426.4 km^2
見してのサンク里しも	$D_b = M_{0b} / (\mu \cdot S_b)$	0.8 m
$_{\rm GE}$ 天知心力 $\sigma_{\rm b}$	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^3 \cdot \sigma_{\rm a}$	2.8 MPa
域 地震モーメント M _{0b}	$M_{0b} = M_0$ - M_{0a}	1.05E+19 Nm
計算用面積	2km メッシュサイズ	428 km²

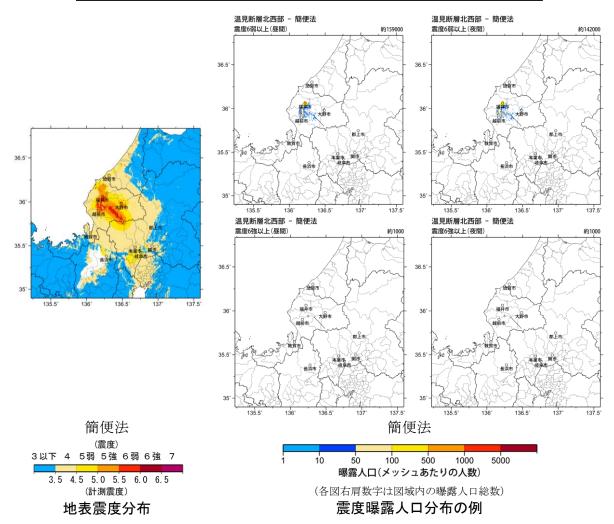

アスペリティと破壊開始点の配置図


福井平野東縁断層帯西部 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 長良川上流断層帯

巨視的震源パラメータ	設定方法	
断層モデル原点	地中の上端における南端	北緯 35.705°
		東経 136.974°
走向 6	長期評価の端点を結ぶ方向	N332.4°E
傾斜角 δ	「高角」	90°
すべり角γ	「左横ずれ、かつ西側隆起の断層」	0°
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	2 km
断層モデル長さ L_{model}	手続き化の方法に従い設定	32 km
断層モデル幅 W_{model}	手続き化の方法に従い設定	16 km
断層モデル面積 $S_{ m model}$	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	512 km^2
地震モーメント M_0	$\log M_0 = 1.17M + 10.72$	1.69E+19 Nm
モーメントマグニチュード M _w	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.8
静的応力降下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot M_0 / R^3$	3.5 MPa
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	1.1 m
短周期レベル A	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	$1.36E+19 \text{ Nm/s}^2$
微視的震源パラメータ		ケース1~4
$_{_{11}}$ 全 面積 S_a	$S_a = \pi r^2, r = 7\pi /4 \cdot M_0 /(A \cdot R) \cdot \beta^2$	120.8 km^2
プァ 平均すべり量 Da	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \ \gamma_{\rm D} = 2.0$	2.2 m
$\left \begin{array}{c} f_{\alpha} \\ f_{\alpha} \end{array} \right $ 実効応力 σ_{a}	$\sigma_{\rm a} = \Delta \sigma_{\rm a} = 7/16 \cdot M_0/(r^2 \cdot R)$	15.0 MPa
ペ 地震モーメント <i>M</i> _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$	8.29E+18 Nm
ペ第 面積 S _{al}	$S_{a1} = S_a \cdot (2/3)$	80.5 km^2
リ 1 平均すべり量 D _{al}	$D_{a1} = (\gamma_1/\Sigma\gamma_i^3) \cdot D_a$	2.4 m
テア 実効応力 σ_{al}	$\sigma_{\rm al} = \sigma_{\rm a}$	15.0 MPa
イス 計算用面積	2km メッシュサイズ	80 km^2
ペ第 面積 S a2	$S_{a2} = S_a \cdot (1/3)$	40.3 km^2
リ 2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2/\Sigma\gamma_i^3) \cdot D_a$	1.7 m
テア 実効応力 σ_{a2}	$\sigma_{\rm a2} = \sigma_{\rm a}$	15.0 MPa
イス計算用面積	2km メッシュサイズ	36 km^2
電積 S _b 平均すべり 是 D	$S_b = S_{\text{model}} - S_a$	391.2 km ²
\mathbb{R}	$D_{b} = M_{0b} / (\mu \cdot S_{b})$	0.7 m
α 天郊心力 σ_b	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^3 \cdot \sigma_{\rm a}$	2.4 MPa
域 地震モーメント M _{0b}	$M_{0\mathrm{b}} = M_0$ - $M_{0\mathrm{a}}$	8.57E+18 Nm
計算用面積	2km メッシュサイズ	396 km²

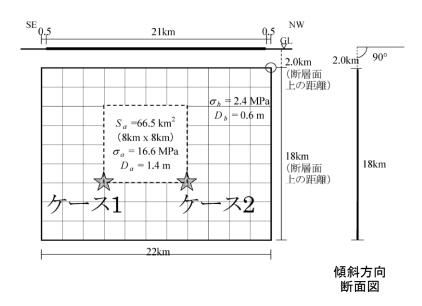
アスペリティと破壊開始点の配置図

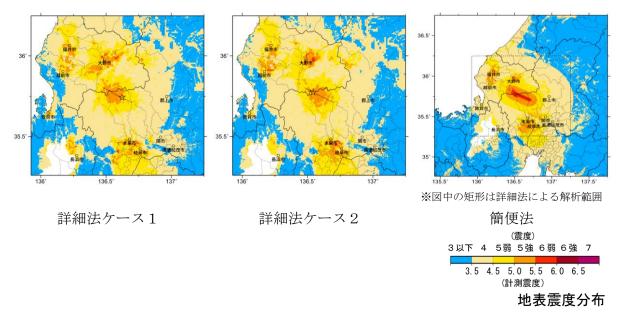


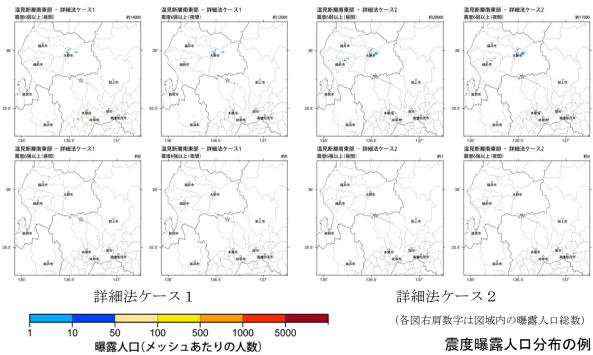
長良川上流断層帯 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 温見断層北西部

強震動予測のための震源パラメータ(2014年版提示モデル)

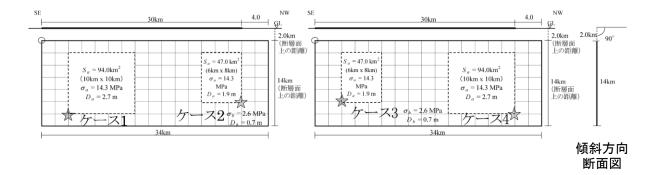

断層パラメータ	設定方法	想定濃尾断層帯地震 温見断層 北西部
断層帯原点		北緯35°48′
	 長期評価による	東経136°29′
活断層長さL	الالالالالا	16 km
気象庁マグニチュード M _{JMA}		6.8
地震モーメント M_0	$\log M_0 = 1.17 M_{\rm JMA} + 10.72$	5.28E+18 Nm
モーメントマグニチュード $_{M_{ m w}}$	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.4
断層モデル原点	地中の断層モデル原点位置	北緯35°47′60″
町管 ロブル 水点	地中の側層とアル原点位置	東経136°28′60″
断層モデル上端深さ	S波速度を参考に設定	2 km
断層モデル長さ $L_{ m model}$	ルールに従い設定	20 km
断層モデル幅 $W_{ m model}$	ルールに従い設定	12 km
断層モデル面積 S _{model}	ルールに従い設定	240 km²
走向 $ heta$	長期評価の原点を結ぶ方向	N 316.5° E
傾斜角 δ	高角(地表付近)	90°

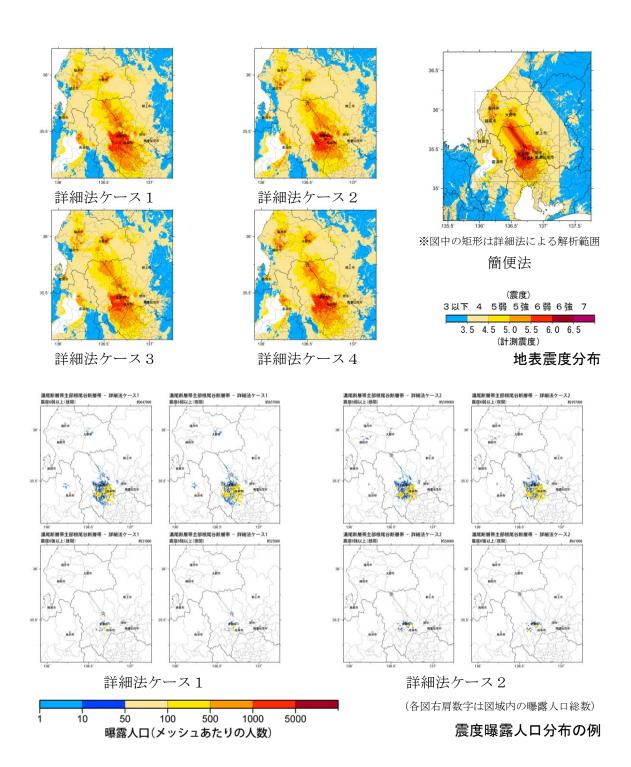

温見断層北西部 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)


震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 温見断層南東部

巨視的震源パラメータ	設定方法	
断層モデル原点	地中の上端における北西端	北緯 35.800°
\$1.0	AND THE STATE OF T	東経 136.483°
走向 6	長期評価の端点を結ぶ方向	N117.1°E
傾斜角を	「高角」	90° 0°
すべり角γ	「左横ずれ断層」	
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	2 km 22 km
断層モデル長さ $L_{ m model}$ 断層モデル幅 $W_{ m model}$	手続き化の方法に従い設定	22 km 18 km
断層モデル面積 S_{model}	手続き化の方法に従い設定	
地震モーメント M_0	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	396 km ² 8.98E+18 Nm
地展セーアンド M_0 モーメントマグニチュード M_w	$\log M_0 = 1.17M + 10.72$	6.6
静的応力降下量 $\Delta \sigma$	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	2.8 MPa
群的応力降下重 $\Delta \sigma$ 平均すべり量 D_{model}	$\Delta \sigma = 7/16 \cdot M_0/R^3$	0.7 m
年 り へり 量 D model 短 周 期 レベル A	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$ $A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	$1.10E+19 \text{ Nm/s}^2$
微視的震源パラメータ	$M = 2.40 \cdot 10^{-1} (M_0 \cdot 10^{-1})^{-1}$	ケース 1 ~ 2
微視的震源パラメータ 中 面積 S _a	$S_a = \pi r^2$, $r = 7\pi / 4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	66.5 km^2
リテ 平均すべり量 Da	$D_{a} = \gamma_{D} \cdot D_{\text{model}}, \gamma_{D} = 2.0$	1.4 m
ティス 実効応力 σ_a	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0/(r^2 \cdot R)$	16.6 MPa
ィペ 実効応刀 σ_a 地震モーメント M_{0a}		2.91E+18 Nm
ペ第 面積 S _{al}	$M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{a1} = S_a$	66.5 km^2
リ1 平均すべり量 Dal	$D_{a1} = (\gamma_1/\Sigma \gamma_i^3) \cdot D_a$	1.4 m
テア 実効応力 $\sigma_{\rm al}$	$\sigma_{a1} = \sigma_a$	16.6 MPa
イス計算用面積	2km メッシュサイズ	64 km^2
ペ第 面積 S _{a2}	$S_{a2} = 0$	_
リ 2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2/\Sigma \gamma_i^3) \cdot D_a$	_
テア 実効応力 σ_{a2}	$\sigma_{\rm a2} = \sigma_{\rm a}$	—
イス計算用面積	2km メッシュサイズ	_
電積 S _b	$S_b = S_{\text{model}} - S_a$	329.5 km^2
見 十20 y へり里 Db	$D_{b} = M_{0b} / (\mu \cdot S_{b})$	0.6 m
$_{\rm a}$ 夫別心力 $\sigma_{\rm b}$	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^{3} \cdot \sigma_{\rm a}$	2.4 MPa
域 地震モーメント M _{0b}	$M_{0b} = M_0 - M_{0a}$	6.07E+18 Nm
計算用面積	2km メッシュサイズ	332 km^2

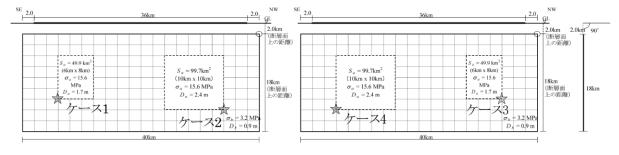
アスペリティと破壊開始点の配置図



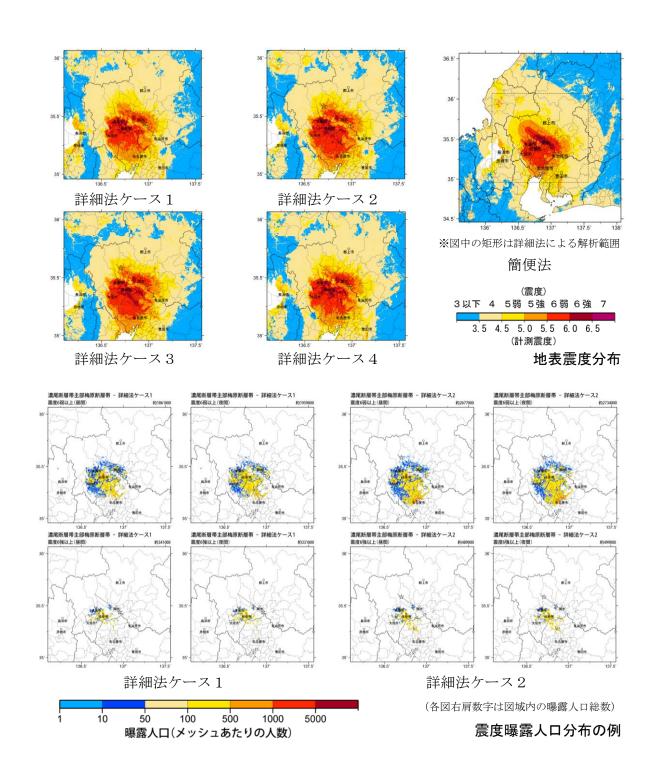

温見断層南東部 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 濃尾断層帯主部根尾谷断層帯

巨視的震源パラメータ	設定方法	
断層モデル原点	地中の上端における南東端	北緯 35.533°
		東経 136.700°
走向 6	長期評価の端点を結ぶ方向	N323.0°E 90°
傾斜角 δ	「高角」	0°
すべり角 γ 断層モデル上端深さ	「左横ずれ断層」	2 km
断層モデル長さ L_{model}	微小地震の発生と地震基盤深さを参考	2 km
断層モデル幅 W_{model}	手続き化の方法に従い設定	14 km
断層モデル面積 S_{model}	手続き化の方法に従い設定	476 km ²
地震モーメント <i>M</i> ₀	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	1.80E+19 Nm
起展で	$\log M_0 = 1.17M + 10.72$	1.80E+19 Nill 6.8
静的応力降下量 $\Delta \sigma$	$M_{\rm w} = (\log M_0 - 9.1) / 1.3$	4.2 MPa
平均すべり量 D_{model}	$\Delta \sigma = 7/16 \cdot M_0/R^3$	1.2 m
短周期レベル A	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$ $A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	1.2 III 1.39E+19 Nm/s ²
微視的震源パラメータ	$A = 2.40 \cdot 10 (M \cdot 10)$	ケース 1 ~ 4
全 面積 S _a V Z V かすべり 是 D	$S_a = \pi r^2$, $r = 7\pi / 4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	141.0 km^2
リエ 平均すべり量 Da	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \ \gamma_{\rm D} = 2.0$	2.4 m
$ $ テス 実効応力 σ_a	$\sigma_{\rm a} = \Delta \sigma_{\rm a} = 7/16 \cdot M_0/(r^2 \cdot R)$	14.3 MPa
** 地震モーメント M _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$	1.06E+19 Nm
ペ第 面積 S _{al}	$S_{a1} = S_a \cdot (2/3)$	94.0 km ²
リ1甲均すべり量刀ョ	$D_{a1} = (\gamma_1/\Sigma \gamma_1^3) \cdot D_a$	2.7 m
テア 実効応力 σ_{al}	$\sigma_{\rm al} = \sigma_{\rm a}$	14.3 MPa
イス計算用面積	2km メッシュサイズ	100 km^2
ペ第 面積 S _{a2}	$S_{a2} = S_a \cdot (1/3)$	47.0 km^2
リ 2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2/\Sigma \gamma_i^3) \cdot D_a$	1.9 m
テア 実効応力 σ_{a2}	$\sigma_{\rm a2} = \sigma_{\rm a}$	14.3 MPa
イス 計算用面積	2km メッシュサイズ	48 km^2
面積 S _b	$S_b = S_{\text{model}} - S_a$	335.0 km^2
中のリンソ里 D b	$D_{b} = M_{0b} / (\mu \cdot S_{b})$	0.7 m
α 天郊心刀 σ_b	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^{3} \cdot \sigma_{\rm a}$	2.6 MPa
_域 地震セーメント M _{0b}	$M_{0b} = M_0 - M_{0a}$	7.43E+18 Nm
計算用面積	2km メッシュサイズ	328 km^2

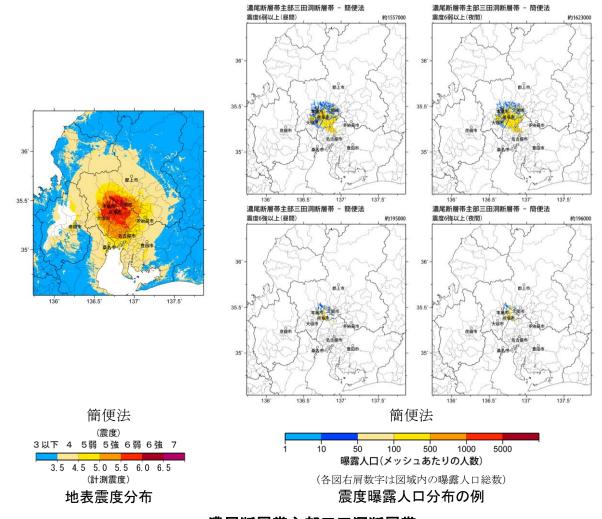

アスペリティと破壊開始点の配置図

濃尾断層帯主部根尾谷断層帯 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)


震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 濃尾断層帯主部梅原断層帯

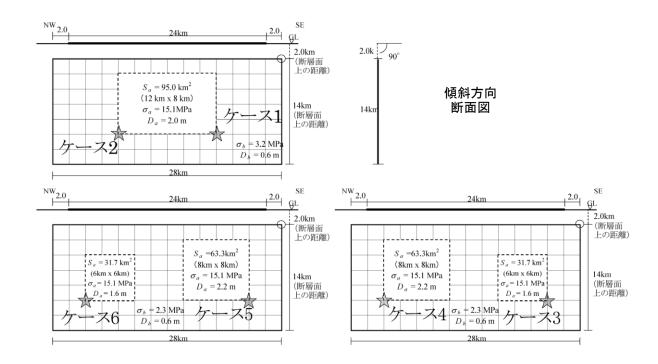
巨視的震源パラメータ	設定方法	
断層モデル原点	地中の上端における北西端	北緯 35.617°
		東経 136.650°
走向 0	長期評価の端点を結ぶ方向	N125.3°E
傾斜角 δ	「高角」	90°
すべり角γ	「左横ずれ断層」	0°
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	2 km
断層モデル長さ L_{model}	手続き化の方法に従い設定	40 km
断層モデル幅 W_{model}	手続き化の方法に従い設定	18 km
断層モデル面積 S_{model}	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	720 km^2
地震モーメント M_0	$\log M_0 = 1.17M + 10.72$	2.57E+19 Nm
モーメントマグニチュード M _w	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.9
静的応力降下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot M_0/R^3$	3.3 MPa
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	1.1 m
短周期レベル A	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	1.56E+19 Nm/s ²
微視的震源パラメータ		ケース1~4
$_{11}$ 全 面積 S_a	$S_{a} = \pi r^{2}, r = 7\pi / 4 \cdot M_{0} / (A \cdot R) \cdot \beta^{2}$	149.6 km^2
プァ 平均すべり量 Da	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \ \gamma_{\rm D} = 2.0$	2.2 m
\int_{1}^{2} 実効応力 σ_{a}	$\sigma_{\rm a} = \Delta \sigma_{\rm a} = 7/16 \cdot M_0/(r^2 \cdot R)$	15.6 MPa
ペ 地震モーメント M _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$	1.03E+19 Nm
ペ第 面積 S _{al}	$S_{a1} = S_a \cdot (2/3)$	99.7 km ²
リ 1 平均すべり量 D _{al}	$D_{\rm al} = (\gamma_1/\Sigma \gamma_i^3) \cdot D_{\rm a}$	2.4 m
テア 実効応力 $\sigma_{\rm al}$	$\sigma_{\rm al} = \sigma_{\rm a}$	15.6 MPa
イス 計算用面積	2km メッシュサイズ	100 km^2
ペ第 面積 S _{a2}	$S_{a2} = S_a \cdot (1/3)$	49.9 km^2
リ 2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_a$	1.7 m
テア 実効応力 σ_{a2}	$\sigma_{a2} = \sigma_a$	15.6 MPa
イス計算用面積	2km メッシュサイズ	48 km ²
電積 S_b でわまべり 是 D	$S_b = S_{\text{model}} - S_a$	570.4 km ²
l l Troy y 、 y 里 D b	$D_{b} = M_{0b} / (\mu \cdot S_{b})$	0.9 m
a 大郊心刀 σ_b	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^{3} \cdot \sigma_{\rm a}$	3.2 MPa
域 地震セーメント M _{0b}	$M_{0b} = M_0 - M_{0a}$	1.54E+19 Nm
計算用面積	2km メッシュサイズ	572 km ²

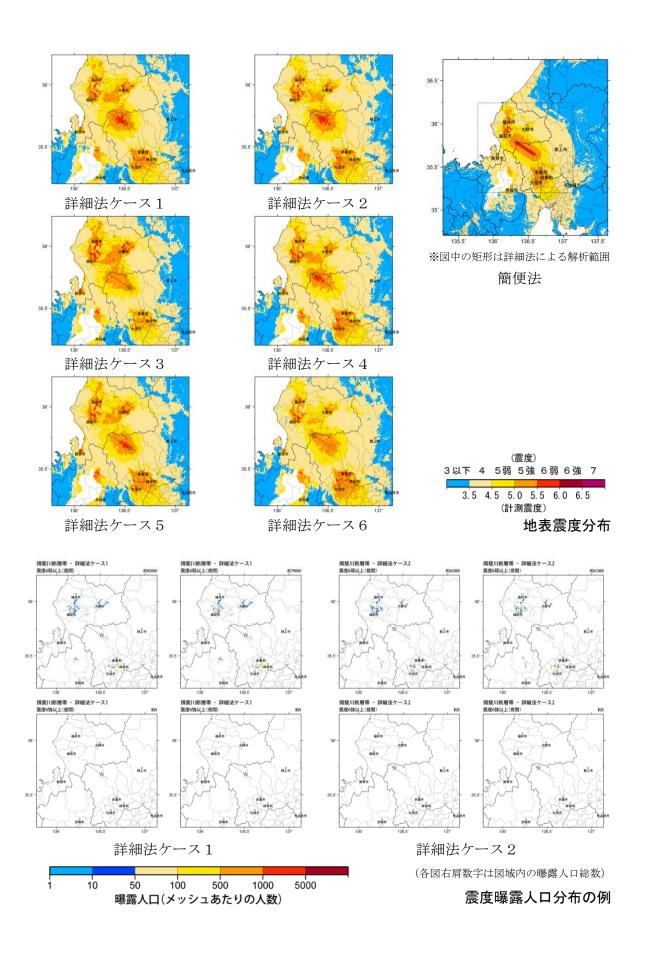
傾斜方向 断面図


アスペリティと破壊開始点の配置図

濃尾断層帯主部梅原断層帯 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

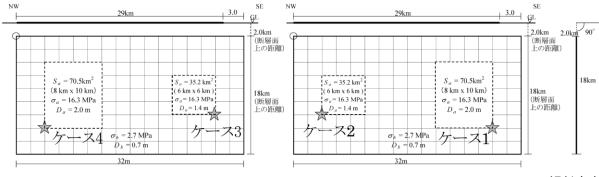
震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 濃尾断層帯主部三田洞断層帯


Mで展。ミニューム	=n +++++	想定濃尾断層帯地震	
断層パラメータ	設定方法	主部• 三田洞断層帯	
断層帯原点	長期評価による	北緯35°32′	
		東経136°42′	
活断層長さL		19 km	
気象庁マグニチュード $M_{ m TMA}$		7.0	
地震モーメント M_0	$\log M_0 = 1.17 M_{\text{JMA}} + 10.72$	7.40E+18 Nm	
モーメントマグニチュード $M_{ m w}$	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.5	
断層モデル原点	地中の断層モデル原点位置	北緯35°32′0″	
断層モデル原点		東経136°42′0″	
断層モデル上端深さ	S波速度を参考に設定	2 km	
断層モデル長さ $L_{ m model}$	ルールに従い設定	22 km	
断層モデル幅 $W_{ m model}$	ルールに従い設定	18 km	
断層モデル面積 S _{model}	ルールに従い設定	396 km²	
走向 θ	長期評価の原点を結ぶ方向	N 126.3° E	
傾斜角 δ	高角 (地表付近)	90°	

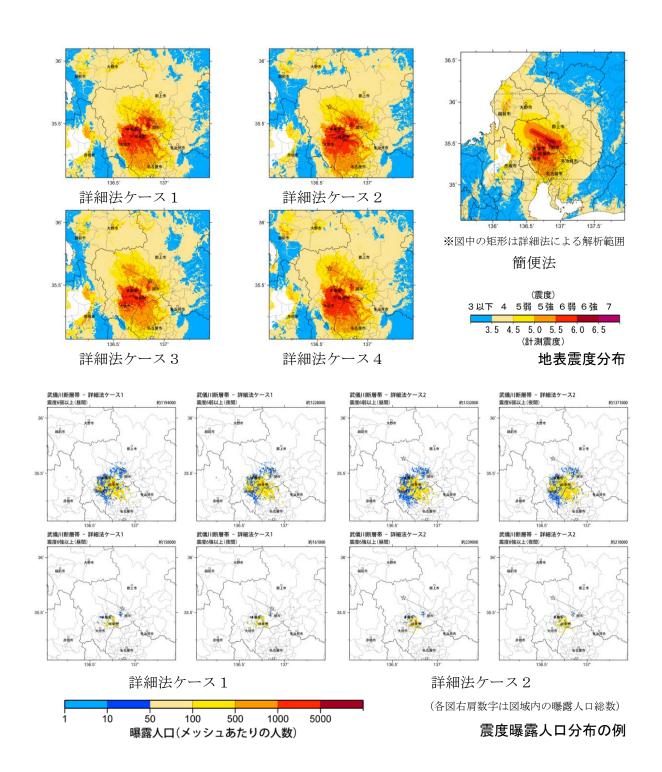

濃尾断層帯主部三田洞断層帯 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 揖斐川断層帯

巨視的震源パラメータ	設定方法			
断層モデル原点	地中の上端における南東端	北緯 35.650°		
		東経 136.583° N303.4°E		
走向 6	長期評価の端点を結ぶ方向		0°	
傾斜角 δ すべり角 γ	「高角」)°	
り	「左横ずれ断層」	`	km	
断層モデル長さ L_{model}	微小地震の発生と地震基盤深さを参考 手続き化の方法に従い設定	_	km	
断層モデル幅 W_{model}			km	
断層モデル面積 S_{model}	手続き化の方法に従い設定		km ²	
地震モーメント M_0	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$ $\log M_0 = 1.17M + 10.72$	1.17E+19		
モーメントマグニチュード M _w	$M = (\log M_{\odot} - 9.1)/1.5$	1.17L+15 6.		
静的応力降下量 Δσ	$\Delta \sigma = 7/16 \cdot M_0/R^3$	3.6 MPa		
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	1.0 m		
短周期レベル A	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	$1.20E+19 \text{ Nm/s}^2$		
微視的震源パラメータ		ケース1~2 : ケース3~6		
$_{_{11}}$ 全 面積 S_{a}	$S_a = \pi r^2$, $r = 7\pi / 4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	95.0 km ²		
リア 平均すべり量Da	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \ \gamma_{\rm D} = 2.0$	2.0 m		
$ _{\gamma}$ ス 美効応力 σ_a	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0/(r^2 \cdot R)$	15.1 MPa		
ペ 地震モーメント M _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{a1} = S_a \text{ or } S_a \cdot (2/3)$	5.93E+18 Nm		
ペ第 面積 $S_{\rm al}$		95.0 km^2	63.3 km^2	
リ 1 平均すべり量 <i>D</i> al	$D_{\rm al} = (\gamma_1/\Sigma \gamma_i^3) \cdot D_{\rm a}$	2.0 m	2.2 m	
テア 実効応力 $\sigma_{\rm al}$	$\sigma_{\rm al} = \sigma_{\rm a}$	15.1 MPa	15.1 MPa	
イス計算用面積	2km メッシュサイズ	96 km ²	64 km^2	
ペ第 面積 S _{a2}	$S_{a2} = 0 \text{ or } S_a \cdot (1/3)$	_	31.7 km^2	
リ 2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_a$	_	1.6 m	
テア 実効応力 σ _{a2}	$\sigma_{a2} = \sigma_a$	_	15.1 MPa	
イス計算用面積	2km メッシュサイズ	207.0 2	$\frac{36 \text{ km}^2}{207.0 \text{ km}^2}$	
面積 S_b 平均すべり量 D_b	$S_b = S_{\text{model}} - S_a$ $D_b = M_b / (M_b S_b)$	$\frac{297.0 \text{ km}^2}{0.6 \text{ m}}$	297.0 km ² 0.6 m	
景宝物はカー	$D_{b} = M_{0b} / (\mu \cdot S_{b})$ $\sigma_{b} = (D_{b} / W_{b}) \cdot (\pi^{1/2} / D_{a}) \cdot r \cdot \Sigma \gamma_{i}^{3} \cdot \sigma_{a}$	0.6 m 3.2 MPa	0.6 m 2.3 MPa	
四 地電エーノい 1 1/1	$ \sigma_{b} = (D_{b}/W_{b}) \cdot (\pi / D_{a}) \cdot r \cdot \Sigma \gamma_{i} \cdot \sigma_{a} $ $ M_{0b} = M_{0} - M_{0a} $	5.73E+18 Nm	2.3 MPa 5.73E+18 Nm	
域 地震セーケント M 06 計算用面積	$M_{0b} - M_{0} - M_{0a}$ 2km メッシュサイズ			
引 昇 川 刞 惧	ZKIII ハソンユリイハ	296 km^2	292 km^2	


アスペリティと破壊開始点の配置図

揖斐川断層帯 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)


震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 武儀川断層

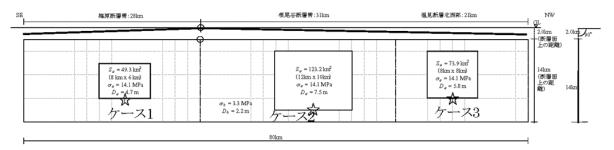
巨視的震源パラメータ	設定方法	
断層モデル原点	地中の上端における北西端	北緯 35.650°
	26 40 工列((C40() の石目利)	東経 136.583°
走向 θ	長期評価の端点を結ぶ方向	N116.8°E
傾斜角 δ	「高角」	90°
すべり角 γ	「左横ずれ断層」	0°
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	2 km
断層モデル長さ L_{model}	手続き化の方法に従い設定	32 km
断層モデル幅 W_{model}	手続き化の方法に従い設定	18 km
断層モデル面積 $S_{ m model}$	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	576 km^2
地震モーメント M ₀	$\log M_0 = 1.17M + 10.72$	1.69E+19 Nm
モーメントマグニチュード $M_{ m w}$	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.8
静的応力降下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot M_0 / R^3$	3.0 MPa
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	0.9 m
短周期レベル A	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	$1.36E+19 \text{ Nm/s}^2$
微視的震源パラメータ		ケース1~4
$_{_{11}}$ 全 面積 S_a	$S_a = \pi r^2$, $r = 7\pi / 4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	105.7 km^2
プァ 平均すべり量 Da	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \ \gamma_{\rm D} = 2.0$	1.8 m
\int_{γ} ス 実効応力 σ_a	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0/(r^2 \cdot R)$	16.3 MPa
' ペ 地震モーメント <i>M</i> _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$	5.94E+18 Nm
ペ第 面積 S _{al}	$S_{a1} = S_a \cdot (2/3)$	70.5 km^2
リ 1 平均すべり量 <i>D</i> al	$D_{\rm al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_{\rm a}$	2.0 m
テア 実効応力 σ_{a1}	$\sigma_{\rm al} = \sigma_{\rm a}$	16.3 MPa
イス 計算用面積	2km メッシュサイズ	80 km^2
ペ第 面積 S _{a2}	$S_{a2} = S_a \cdot (1/3)$	35.2 km^2
リ 2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2/\Sigma \gamma_i^3) \cdot D_a$	1.4 m
テア 実効応力 σ_{a2}	$\sigma_{a2} = \sigma_a$	16.3 MPa
イス 計算用面積	2km メッシュサイズ	36 km^2
面積 S _b	$S_b = S_{\text{model}} - S_a$	470.3 km^2
背 平均すべり量D _b	$D_b = M_{0b} / (\mu \cdot S_b)$	0.7 m
(活 大グルロノナ O b	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^3 \cdot \sigma_{\rm a}$	2.7 MPa
_域 地震セーメント M _{0b}	$M_{0b} = M_0$ - M_{0a}	1.09E+19 Nm
計算用面積	2km メッシュサイズ	460 km^2

傾斜方向 断面図

アスペリティと破壊開始点の配置図

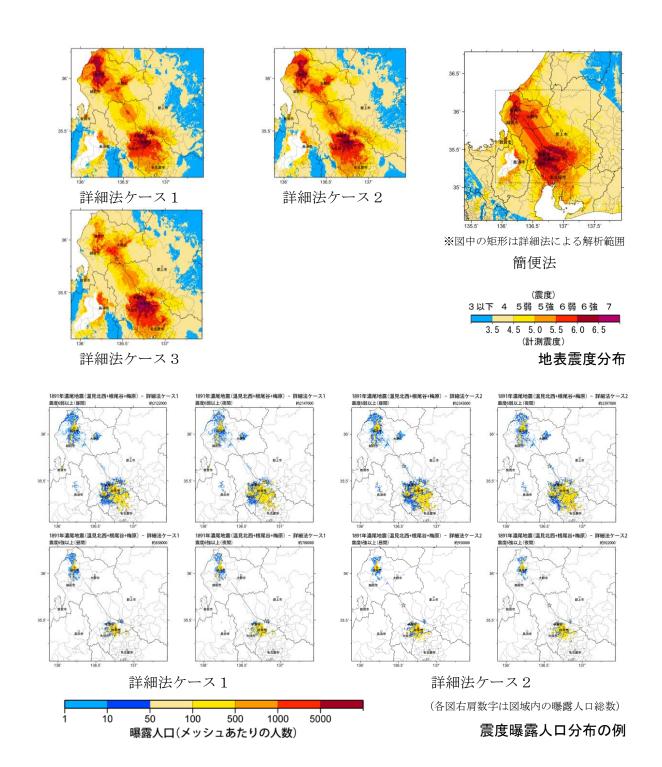
武儀川断層 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 1891 年濃尾地震 (温見北西+根尾谷+梅原)


強震動予測のための震源パラメータ(2014年版提示モデル)

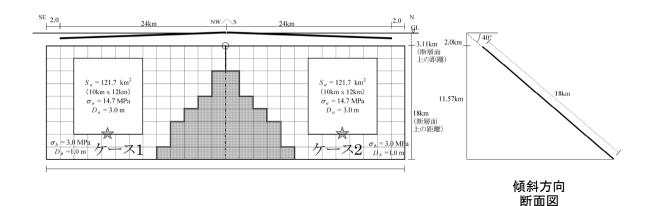
震源パラメータ	設定方法 想定1891年濃尾地震				
長塚ハノケータ		温見断層北西部	根尾谷断層	梅原断層	
断層帯原点		北緯35°26′			
阿信市原总	長期評価に基づく	東経 136°58′			
活断層長さL		76 km			
気象庁マグニチュード M	M = (log L + 2.9) / 0.6	8.0			
地震モーメント M ₀	$\log M_0 = 1.17M + 10.72$	1.10E+20 Nm			
モーメントマグニチュード Mw	$Mw = (log M_0 - 9.1) / 1.5$	7.3			
断層モデル原点	断層の屈曲点の位置		北緯 35°31'26″		
例信でデル原点	倒度の風面点の位置	東経 136°41'06″			
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	2 km	2 km	2 km	
単位区間長さ Lseg	手続き化の方法に従い設定	21 km	31 km	28 km	
単位区間幅 Wseg	地震発生層厚さと傾斜角より	14 km	14 km	14 km	
単位区間面積 Sseg	Sseg = Lseg × Wseg	294 km ²	434 km^2	392 km ²	
断層モデル総面積 Smodel	Smodel = SSseg	1120 km ²			
走向 θ	長期評価の端点を結ぶ方向	N316.5° E	N323.0° E	N125.3° E	
傾斜角 δ	「高角」	90°	90°	90°	
すべり角 γ	「左横ずれ断層」	0°	0°	0°	
静的応力降下量 Δσ	Fujii and Matsu'ura (2000) より		3.1 MPa		
平均すべり量 Dmodel	Dmodel = $M_0 / (m \cdot Smodel)$		3.2 m		

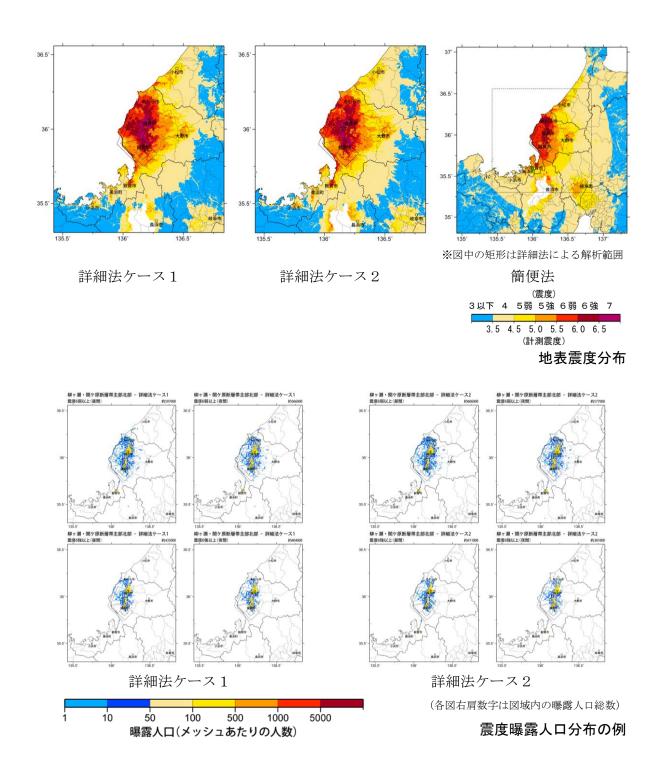
※本書では、調査結果から得られている各断層帯の平均すべり量の比率に合わせて、


アスペリティの面積を配分した。位置も得られた変位量分布に合わせて配置した。

ただし、推定されている震度分布との整合性や、歴史地震に対するパラメータ設定方法の再考により、この結果は変わる可能性がある。

傾斜方向 断面図

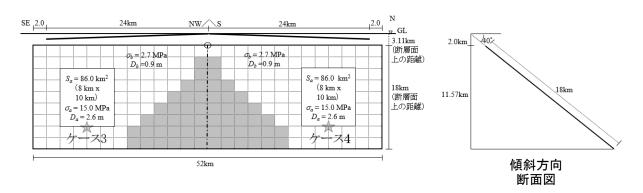

アスペリティと破壊開始点の配置図

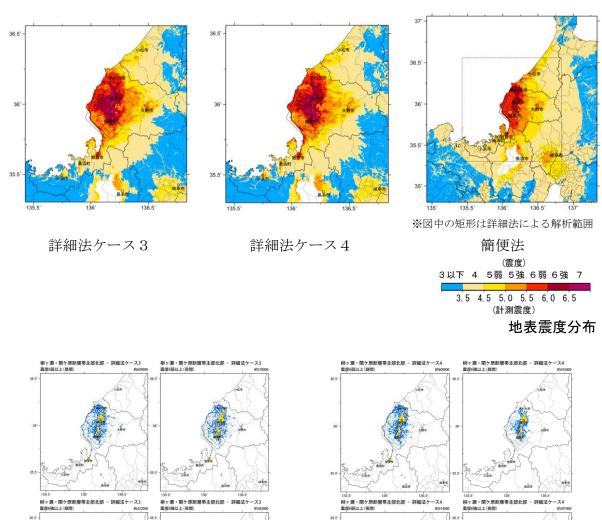

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 柳ヶ瀬・関ヶ原断層帯主部北部

※地震モーメントの値はレシピ通りで微視的パラメータを設定したモデル

巨視的震源パラメータ	設定方法	北半部	南半部	
断層モデル原点	地中の上端における屈曲点	北緯 35.905° 東経 135.981°		
走向 θ	長期評価の端点を結ぶ方向	N22.1°E	N135.1°E	
傾斜角 δ	「東傾斜」/「約40°北東傾斜」	40°	140°	
すべり角 γ	「東側隆起の逆断層」/「北東側隆起	90°	90°	
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	2 km	2 km	
単位区間長さ L_{seg}	手続き化の方法に従い設定	26 km	26 km	
単位区間幅 W _{seg}	手続き化の方法に従い設定	18 km	18 km	
単位区間面積 S_{seg}	$S_{\text{seg}} = L_{\text{seg}} \times W_{\text{seg}}$	468 km^2	468 km^2	
断層モデル総面積 $S_{ m model}$	$S_{\text{model}} = \sum S_{\text{seg}}$	936	km ²	
地震モーメント M_0	$\log M_0 = 1.17M + 10.72$	4.50E+19	Nm	
モーメントマグニチュード $M_{ m w}$	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	7.	-	
静的応力降下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot M_0 / R^3$		MPa	
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	1.5		
短周期レベル A	$A = 2.46 \cdot 10^{10} \left(M_0 \cdot 10^7 \right)^{1/3}$	1.88E+19		
微視的震源パラメータ		ケース1~2		
全アスペリティ面積 $S_{\rm a}$	$S a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	243.3 km^2		
全アスペリティの実効応力 $\sigma_{ m a}$	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$	14.7 MPa 北半部 南半部		
	単位区間ごとの微視的震源パラメータ		南半部	
単位区間地震モーメント Moseg	単位区間面積の1.5乗に比例して配分	2.25E+19 Nm	2.25E+19 Nm	
単位区間平均すべり量 D _{seg}	$D_{\text{seg}} = M_{0\text{seg}} / (\mu \cdot S_{\text{seg}})$	1.5 m	1.5 m	
」全面積S _{a seg}	単位区間面積に比例して配分	121.7 km^2	121.7 km^2	
リア 平均すべり量 Da seg	$D_{\text{a seg}} = \gamma_{\text{D}} \cdot D_{\text{seg}}, \gamma_{\text{D}} = 2.0$	3.0 m	3.0 m	
I_{α} ス 美効応力 $\sigma_{a \text{ seg}}$	$\sigma_{\rm a \ seg} = \sigma_{\rm a}$	14.7 MPa	14.7 MPa	
ペ 地震モーメント $M_{0a \text{ seg}}$	$M_{0a \text{ seg}} = \mu \cdot D_{a \text{ seg}} \cdot S_{a \text{ seg}}$		1.14E+19 Nm	
ペ第 面積 S _{al}	_	121.7 km^2	_	
リ1 平均すべり量 Dal	_	3.0 m	_	
テア 実効応力 $\sigma_{\rm al}$	_	14.7 MPa	_	
イス計算用面積	2km メッシュサイズ	120 km ²	- ,	
ペ第 面積 S _{a2}		_	121.7 km^2	
リ2 平均すべり量Da2	_	_	3.0 m	
テア 実効応力 σ_{a2}		_	14.7 MPa	
イス計算用面積	2km メッシュサイズ	2462 1 2	$\frac{120 \text{ km}^2}{246.2 \text{ km}^2}$	
電積 S _b That N B D	$S_{b} = S_{\text{seg}} - S_{a \text{ seg}}$	346.3 km^2	346.3 km^2	
見 干切り**り里 Db	$D{b} = M_{0b} / (\mu \cdot S_{b})$	1.0 m	1.0 m	
$ $ $_{\rm fig}$ 夫別心刀 $\sigma_{\rm b}$	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b seo}) \cdot (\pi^{1/2}/D_{\rm a seo}) \cdot r \cdot \Sigma \gamma_{\rm i}^{3} \cdot \sigma_{\rm seo}$		3.0 MPa	
域 地震モーメント M _{0b}	$M_{0b} = M_{0\text{seg}} - M_{0a \text{ seg}}$	1.11E+19 Nm	1.11E+19 Nm	
計算用面積	2km メッシュサイズ	348 km^2	348 km^2	

アスペリティと破壊開始点の配置図

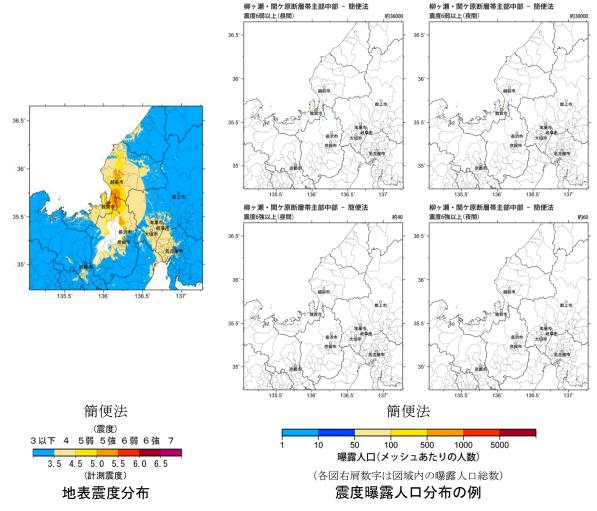

柳ヶ瀬・関ヶ原断層帯主部北部


※地震モーメントの値はレシピ通りで微視的パラメータを設定したモデル **震源断層を特定した地震動予測地図(シナリオ地震動予測地図)**

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 柳ヶ瀬・関ヶ原断層帯主部北部

※面積が重なった分の地震モーメントを小さくして微視的パラメータを求めたモデル 強震動予測のための震源パラメータ(2014年版に基づく再算定モデル)

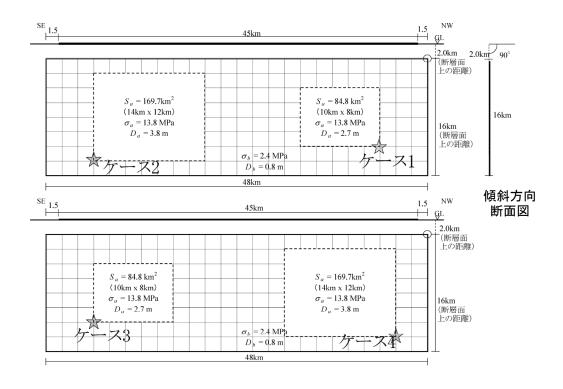
	巨視的震源パラメータ	「長期評価」または設定方法		鉄)	き値	
活断層長さん		約48km	48 km			
マグニ	ニチュード <i>M</i>	7.6程度		7.	.6	
	巨視的震源パラメータ	設定方法	北半部	B	南半	祁
断層-	モデル原点	地中の上端における屋曲点			35.905°	
					35.981°	
走向		長期評価の端点を結ぶ方向			N135.1	
傾斜角	θ δ	「東傾斜」/「約40°北東傾斜」	40°		140°	_
ナベ!	ற角 γ	「東側隆起の逆断層」/「北東側隆起の逆 断層」	90°		90°	
折層-	モデル上端弾さ	微小地震の発生と地震基盤深さを参考	2	lam.	2	km
単位[조間長さ L seg	手続き化の方法に従い設定	26	lam	26	km
単位[区間幅 W seq.	手続き化の方法に従い設定	18	km	18	km
	区間面積 S∞g	$S_{\infty g} = L_{\text{seg}} \times W_{\infty g}$	468	km²	468	km
重複	余去の単位区間面積 S 處	_	357.5	km²	357.5	1cm
	モデル総面積 Smodel	$S_{\text{model}} = \Sigma S_{\text{seg}}$		936	km ²	
	モーメント M_0	$\log M_0 = 1.17M + 10.72$	4.50	E+19		
	メントマグニチュード $M_{\scriptscriptstyle m w}$	$M_w = (\log M_0 - 9.1) / 1.5$.0	
	余去の断層面積 Smodel	$S_{\text{model}} = \Sigma S_{\text{seg}}$,	714.9	km ²	
重複關	$余去の地震モーメント M_{\scriptscriptstyle 0}{}^{\prime}$	$M_0' = \{S_{\text{model}}/(4.24 \times 10^{72}) \times 10^{11}\}^2$	2.84	E+19	Nm	
重複	余去のモーメントマグニチュード <i>M</i> _v '	$M_w' = (\log M_0' - 9.1)/1.5$		6	9	
静的原	芯力降下量 Δσ	$\Delta \sigma = 7/16 \cdot M_0 / R^3$		3.6	MPa	
平均:	すべり量 D m ode1	$D_{model} = M_0 / (\mu \cdot S_{model})$		1.3	m	
短周期	朝レベル A	$A = 2.46 \cdot 10^{10} \cdot (M_0' \cdot 10^7)^{18}$	1.62	E+19	Nm/s²	
	微視的震源パラメータ		- 8	テース	3~4	
全プス	スペリティ面積 ≲。	$S_a = \pi r^2$, $r = 7\pi/4 \cdot M_0 / (A \cdot R) \cdot \beta^2$		172.0	km ²	
全プス	スペリティの実効応力 σ。	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0 / (r^2 \cdot R)$		15.0	MPa	
	単位区間ごと		北半部	B	南半	B.
単位[区間地震モーメント $M_{ m 0seg}$	単位区間面積の1.5乗に比例して配分	1.42E+19	Nm	1.42E+19	Nn
単位[区間平均すべり量 <i>D</i> seg	$D_{seg} = M_{0seg} / (\mu \cdot S_{seg})$			1.3	
"全	面積の表現の	単位区間面積に比例して配分	86.0	km²	86.0	km
ر ح	TAN 9 TO E Da_seg	$D_{a_seg} = \gamma_D \cdot D_{seg}, \gamma_D = 2.0$		m		
구조	実 効応力 σ _{a_seg}	$\sigma_{a_seg} = \sigma_a$			15.0	-
^	地震モーメント M_{0a} $_{\infty g}$	$M_{0a_seg} = \mu \cdot D_{a_seg} \cdot S_{a_seg}$	6.98E+18	Nm	6.98E+18	Nn
ペ第	面積 S _{a1}	$S_{al} = S_{a_eg} \cdot (2/3)$ or S_{a_eg}	86.0	km²	_	
	平均すべり量 D a1	$D_{a1} = (\gamma_1/\Sigma \gamma_i^3) \cdot D_{a \text{ seg.}}$	2.6	m	_	
テブ	実効応力 σ α1	$\sigma_{al} = \sigma_{a_x_B}$	15.0	MPa	_	
	計算用面積	2km メッシュサイズ	80	km²	_	
ペ第	面積 S _{*2}	$S_{a2} = S_{a_xcg} \cdot (1/3) \text{ or } 0$	_		86.0	km
	平均すべり量 D 22	$D_{a2} = (\gamma_2/\Sigma \gamma_i^3) \cdot D_{a \text{ seg.}}$	_		2.6	m
テプ	実効応力 σ₂₂	$\sigma_{a2} = \sigma_{a_xeg}$	_		15.0	M
1 ス	計算用面積	2km メッシュサイズ	_		80	km
-10-	面積 S。	$S_b = S_{\text{seg}} - S_{\text{a_seg}}$	271.5	km²	271.5	km
背旦	平均すべり 量力。	$D_b = M_{0b}/(\mu \cdot S_b)$	0.9	m	0.9	m
景領	実効応力 σ,	$\sigma_b = (D_b/W_{b \text{ seq}}) \cdot (\pi^{1/2}/D_{a \text{ seq}}) \cdot r \cdot \Sigma \gamma_i^3 \cdot \sigma_{a \text{ seq}}$	2.7	MPa	2.7	MI
領域	地震モーメント M _{0b}	$M_{0b} = M_{0keg} - M_{0a_seg}$	7.24E+18	Nm	7.24E+18	Nn
	計算用面積	2km メッシュサイズ		lam ²		

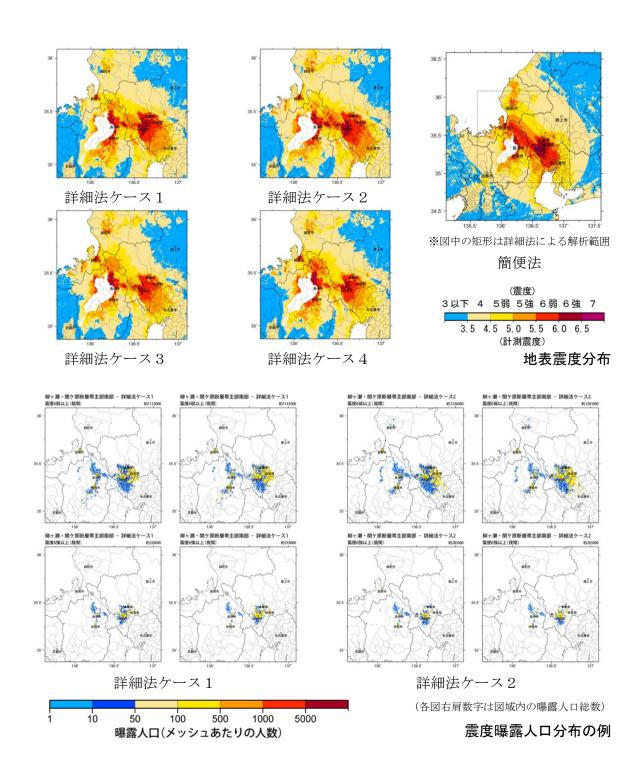


柳ヶ瀬・関ヶ原断層帯主部北部

※面積が重なった分の地震モーメントを小さくして微視的パラメータを求めたモデル **震源断層を特定した地震動予測地図(シナリオ地震動予測地図)**

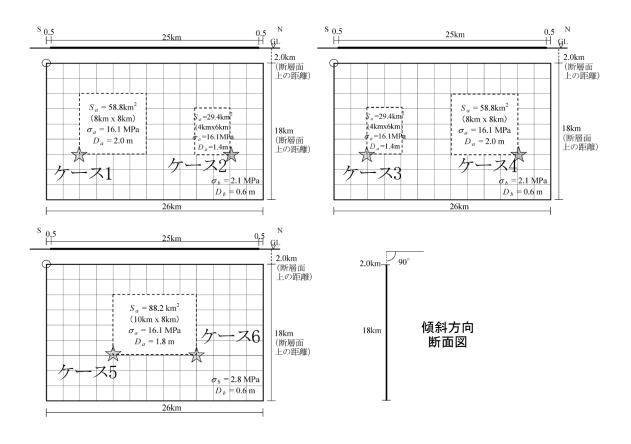
震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 柳ヶ瀬・関ヶ原断層帯主部中部

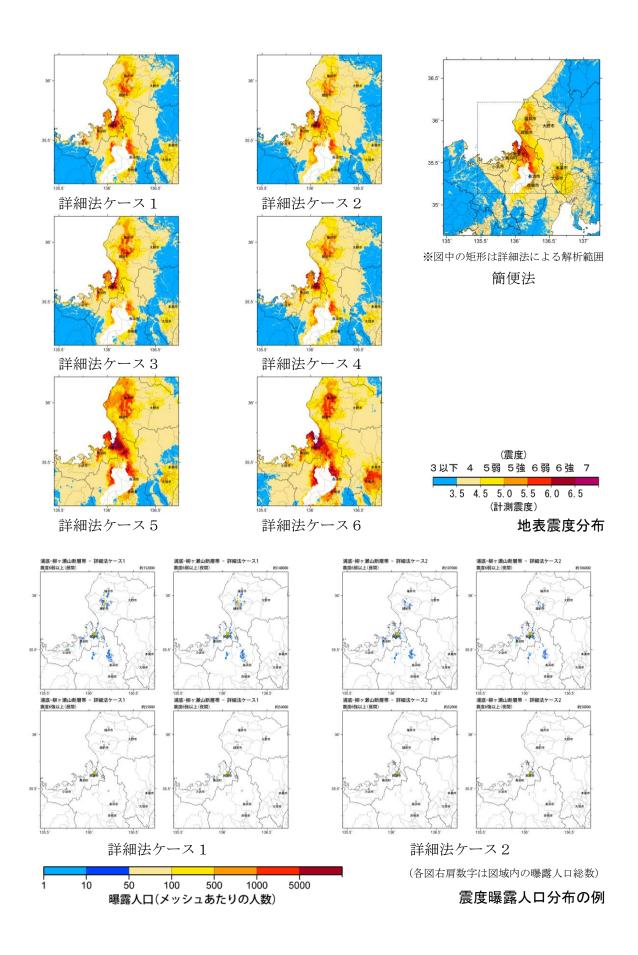

断層パラメータ	設定方法	想定柳ヶ瀬・関ヶ原断層帯地震	
西川音ハラグータ	設定刀法	主部・中部	
断層帯原点 活断層長さ <i>L</i>	北緯35°	北緯35°38′	
	長期評価による	東経136°10′	
	大大学	12 km	
気象庁マグニチュード $M_{ m IMA}$		6.6	
地震モーメント M_0	$\log M_0 = 1.17 M_{\rm JMA} + 10.72$	3.02E+18 Nm	
モーメントマグニチュード $M_{ m w}$	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.3	
断層モデル原点	地中の断層モデル原点位置	北緯35°38′0″	
向着モデル派点	心中の向信でアルホベ区區	東経136°10′0″	
断層モデル上端深さ	S波速度を参考に設定	2 km	
断層モデル長さ L _{model}	2008年版による設定	13 km	
断層モデル幅 $W_{ m model}$	2008年版による設定	12 km	
断層モデル面積 S _{model}	2008年版による設定	156 km²	
走向 🛭	長期評価の原点を結ぶ方向	N 353.4° E	
傾斜角 δ	ほぼ垂直(地表近傍)	90°	


柳ヶ瀬・関ヶ原断層帯主部中部 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 柳ヶ瀬・関ヶ原断層帯主部南部

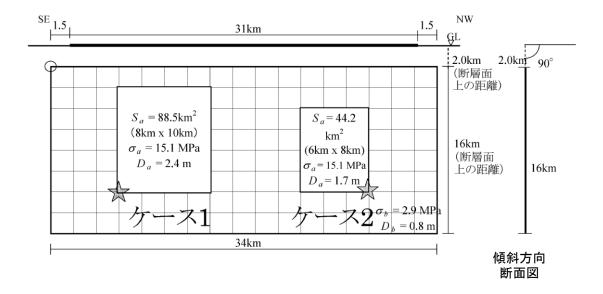
巨視的震源パラメータ	設定方法	
断層モデル原点	地中の上端における北西端	北緯 35.633°
		東経 136.167°
走向 θ	長期評価の端点を結ぶ方向	N134.7°E
傾斜角 δ	「ほぼ垂直」	90°
すべり角 γ	「左横ずれ断層」	0°
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	2 km
断層モデル長さ $L_{ m model}$	手続き化の方法に従い設定	48 km
断層モデル幅 $W_{ m model}$	手続き化の方法に従い設定	16 km
断層モデル面積 $S_{ m model}$	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	768 km^2
地震モーメント M_0	$\log M_0 = 1.17M + 10.72$	3.97E+19 Nm
モーメントマグニチュード M _w	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	7.0
静的応力降下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot M_0/R^3$	4.6 MPa
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	1.7 m
短周期レベル A	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	$1.81E+19 \text{ Nm/s}^2$
微視的震源パラメータ		ケース1~4
$_{_{11}}$ 全 面積 S_{a}	$S_a = \pi r^2$, $r = 7\pi / 4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	254.5 km^2
$\begin{bmatrix} y \\ z \end{bmatrix}$ 平均すべり量 D_a	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \ \gamma_{\rm D} = 2.0$	3.4 m
$ \gamma \rangle$ 実効応力 σ_a	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0/(r^2 \cdot R)$	13.8 MPa
ペ 地震モーメント <i>M</i> _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$	2.70E+19 Nm
ペ第 面積 S _{al}	$S_{a1} = S_a \cdot (2/3)$	169.7 km^2
リ 1 平均すべり量 <i>D</i> al	$D_{a1} = (\gamma_1/\Sigma \gamma_i^3) \cdot D_a$	3.8 m
テア 実効応力 $\sigma_{ m al}$	$\sigma_{\rm al} = \sigma_{\rm a}$	13.8 MPa
イス計算用面積	2km メッシュサイズ	168 km^2
ペ第 面積 S _{a2}	$S_{a2} = S_a \cdot (1/3)$	84.8 km^2
リ 2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2/\Sigma\gamma_i^3) \cdot D_a$	2.7 m
テア 実効応力 σ_{a2}	$\sigma_{\rm a2} = \sigma_{\rm a}$	13.8 MPa
イス計算用面積	2km メッシュサイズ	80 km^2
電積 S _b でわまべり 是 D	$S_b = S_{\text{model}} - S_a$	513.5 km^2
p 十つり、り里Db	$D_{\rm b} = M_{\rm 0b} / (\mu \cdot S_{\rm b})$	0.8 m
μ (大外)心力 σ_b	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^3 \cdot \sigma_{\rm a}$	2.4 MPa
域 地震モーメント M _{0b}	$M_{0\mathrm{b}} = M_0$ - $M_{0\mathrm{a}}$	1.27E+19 Nm
計算用面積	2km メッシュサイズ	520 km^2

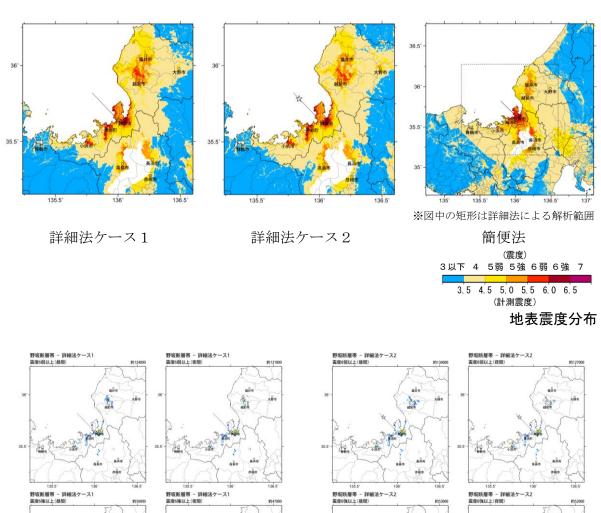

アスペリティと破壊開始点の配置図


柳ヶ瀬・関ヶ原断層帯主部南部 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 浦底一柳ヶ瀬山断層帯

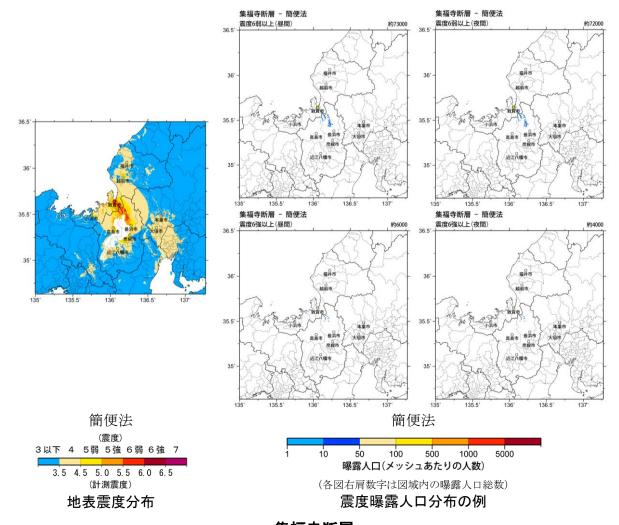
巨視的震源パラメータ	設定方法			
断層モデル原点	地中の上端における南端	1-11	35.583°	
		,,.,,	36.183°	
走向 6	長期評価の端点を結ぶ方向		0.8°E	
傾斜角 δ	「ほぼ垂直」		0°	
すべり角γ	「左横ずれ断層」	l `)°	
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考		km	
断層モデル長さ L model	手続き化の方法に従い設定		km	
断層モデル幅 W _{model}	手続き化の方法に従い設定		km	
断層モデル面積 S_{model}	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$		km ²	
地震モーメント M_0	$\log M_0 = 1.17M + 10.72$	1.26E+19		
モーメントマグニチュード M_{w}	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.		
静的応力降下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot M_0/R^3$		MPa	
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	0.9		
短周期レベル A	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	1.23E+19		
微視的震源パラメータ	2		ケース5~6	
」全面積Sa	$S_{\rm a} = \pi r^2$, $r = 7\pi / 4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	88.2 km ²		
リア 平均すべり量 Da	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \gamma_{\rm D} = 2.0$	1.8		
$ _{\gamma} \wedge $ 夫別応刀 σ_{a}	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0/(r^2 \cdot R)$	16.1		
ペ 地震モーメント M _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{a1} = S_a \cdot (2/3) \text{ or } S_a$	4.96E+18		
ペ第 面積 S _{al}		58.8 km^2	88.2 km^2	
リ 1 平均すべり量 D _{al}	$D_{\rm al} = (\gamma_1/\Sigma \gamma_i^3) \cdot D_{\rm a}$	2.0 m	1.8 m	
テア 実効応力 σ_{a1}	$\sigma_{\rm al} = \sigma_{\rm a}$	16.1 MPa	16.1 MPa	
イス 計算用面積	2km メッシュサイズ	64 km^2	80 km^2	
ペ第 面積 S _{a2}	$S_{a2} = S_a \cdot (1/3)$ or 0	29.4 km^2	_	
リ2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_a$	1.4 m	_	
テア 実効応力 σ_{a2}	$\sigma_{a2} = \sigma_a$	16.1 MPa	_	
イス計算用面積	2km メッシュサイズ	24 km^2	_	
背 面積 S _b でわまべり 是 D	$S_{b} = S_{\text{model}} - S_{a}$	379.8 km^2	379.8 km^2	
_ 見 十切 9 * * り 里 D b	$D_b = M_{0b} / (\mu \cdot S_b)$	0.6 m	0.6 m	
$_{\rm GI}$ 夫別心刀 $\sigma_{\rm b}$	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^{3} \cdot \sigma_{\rm a}$	2.1 MPa	2.8 MPa	
域 地震モーメント M _{0b}	$M_{0b} = M_0 - M_{0a}$	7.65E+18 Nm	7.65E+18 Nm	
計算用面積	2km メッシュサイズ	380 km^2	388 km^2	


アスペリティと破壊開始点の配置図


浦底ー柳ヶ瀬山断層帯 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

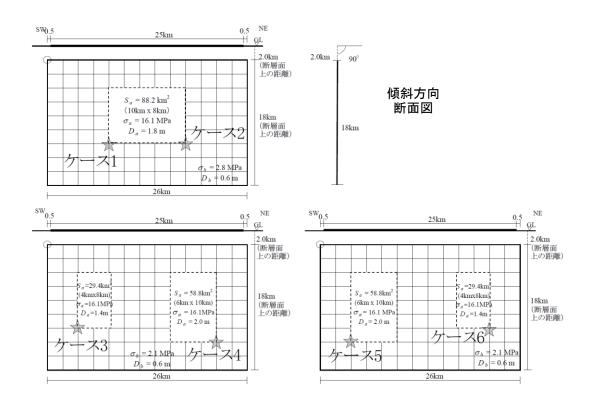
震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 野坂断層帯

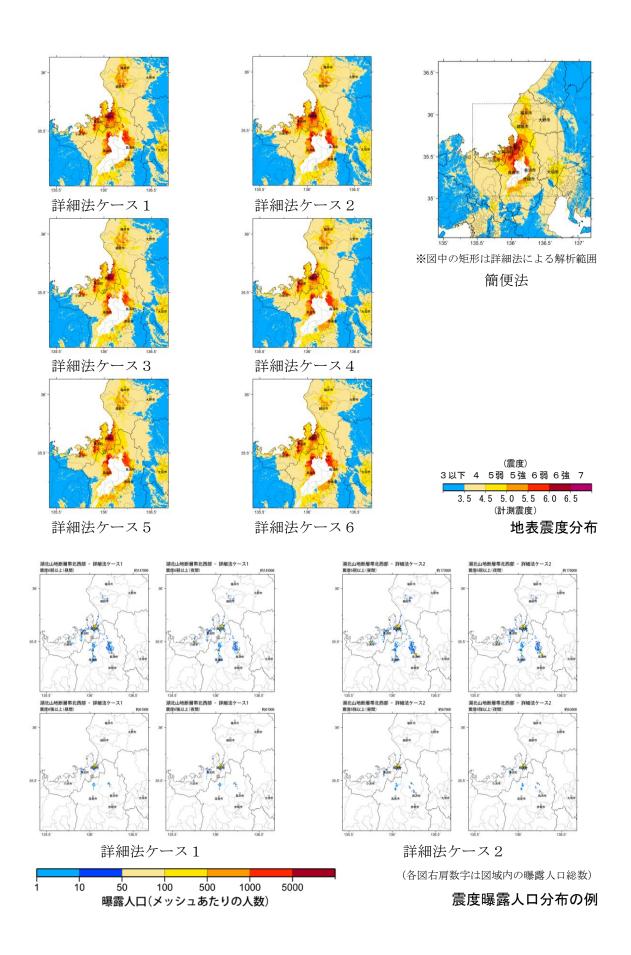
巨視的震源パラメータ	設定方法	
断層モデル原点	地中の上端における南東端	北緯 35.600°
		東経 136.050°
走向 θ	長期評価の端点を結ぶ方向	N316.4°E
傾斜角 δ	「高角,北東傾斜」	90°
すべり角 γ	「左横ずれ、かつ北東側隆起の逆断層	0°
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考	2 km
断層モデル長さ $L_{ m model}$	手続き化の方法に従い設定	34 km
断層モデル幅 W_{model}	手続き化の方法に従い設定	16 km
断層モデル面積 $S_{ m model}$	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	544 km^2
地震モーメント M_0	$\log M_0 = 1.17M + 10.72$	1.92E+19 Nm
モーメントマグニチュード M _w	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.8
静的応力降下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot M_0 / R^3$	3.7 MPa
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	1.1 m
短周期レベル A	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	$1.42E+19 \text{ Nm/s}^2$
微視的震源パラメータ		ケース1~2
$_{11}$ 全 面積 S_a	$S_{a} = \pi r^{2}, r = 7\pi / 4 \cdot M_{0} / (A \cdot R) \cdot \beta^{2}$	132.7 km^2
リア 平均すべり量 Da	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \ \gamma_{\rm D} = 2.0$	2.2 m
$ _{\gamma} \wedge $ 夫別応刀 σ_{a}	$\sigma_a = \Delta \sigma_a = 7/16 \cdot M_0/(r^2 \cdot R)$	15.1 MPa
ペ 地震モーメント <i>M</i> _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{a1} = S_a \cdot (2/3)$	9.11E+18 Nm
ペ第 面積 S _{al}	$S_{a1} = S_a \cdot (2/3)$	88.5 km^2
リ 1 平均すべり量 <i>D</i> al	$D_{\rm al} = (\gamma_1/\Sigma \gamma_i^3) \cdot D_{\rm a}$	2.4 m
テア 実効応力 $\sigma_{ m al}$	$\sigma_{\rm al} = \sigma_{\rm a}$	15.1 MPa
イス計算用面積	2km メッシュサイズ	80 km^2
ペ第 面積 S _{a2}	$S_{a2} = S_a \cdot (1/3)$	44.2 km^2
リ 2 平均すべり量 <i>D</i> _{a2}	$D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_a$	1.7 m
テア 実効応力 σ_{a2}	$\sigma_{\rm a2} = \sigma_{\rm a}$	15.1 MPa
イス 計算用面積	2km メッシュサイズ	48 km^2
T 面積 S _b 平均すべり 是 D	$S_{b} = S_{\text{model}} - S_{a}$	411.3 km^2
中の 9 · 、 9 里 D b	$D_b = M_{0b} / (\mu \cdot S_b)$	0.8 m
$_{\text{6}}$ 天外心力 σ_{b}	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^{3} \cdot \sigma_{\rm a}$	2.9 MPa
	$M_{0b} = M_0$ - M_{0a}	1.01E+19 Nm
計算用面積	2km メッシュサイズ	416 km ²


アスペリティと破壊開始点の配置図

野坂断層帯 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

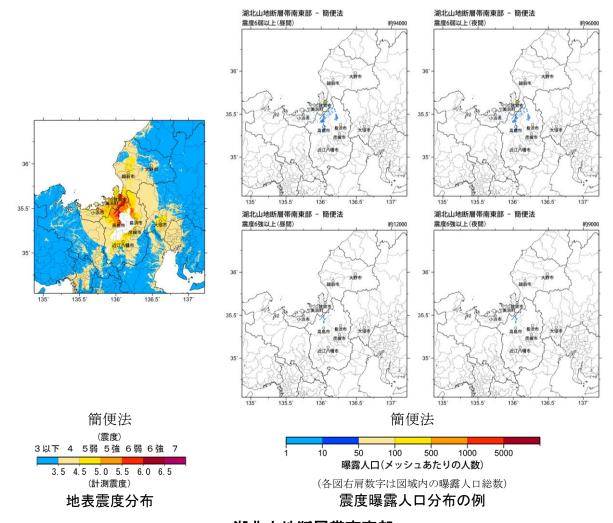
震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 集福寺断層


断層パラメータ	設定方法	想定野坂·集福寺断層帯地震	
倒層ハファータ	政定力法	集福寺断厝	
断層帯原点 活断層長さ <i>L</i>		北緯35°32′	
	長期評価による	東経136°10′	
		10 km	
気象庁マグニチュード $M_{ m IMA}$		6.5	
地震モーメント M_0	$\log M_0 = 1.17 \ M_{\rm JMA} + 10.72$	2.11E+18 Nm	
モーメントマグニチュード $_{M_{\mathrm{w}}}$	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.2	
断層モデル原点	地中の断層モデル原点位置	北緯35°32′0″	
阿信しアルホ州		東経136°10′0″	
断層モデル上端深さ	S波速度を参考に設定	2 km	
断層モデル長さ $L_{ m model}$	2008年版による設定	9.6 km	
断層モデル幅 $W_{ m model}$	2008年版による設定	10 km	
断層モデル面積 S _{model}	2008年版による設定	96 _{km} ²	
走向 θ	長期評価の原点を結ぶ方向	N 320.7° E	
傾斜角 δ	ほぽ垂直(地表近傍)	90°	


集福寺断層 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 湖北山地断層帯北西部

巨視的震源パラメータ	設定方法		
断層モデル原点	地中の上端における南東端	1-11	35.479°
走向 θ	長期評価の端点を結ぶ方向		35.981° 0.7°E
傾斜角 δ	「高角、南東傾斜」		0°
すべり角 γ	「右横ずれかつ南東側隆起の逆断層」	-	80°
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考		km
断層モデル長さ L_{model}	手続き化の方法に従い設定	_	km
断層モデル幅 W_{model}	手続き化の方法に従い設定	18	km
断層モデル面積 $S_{ m model}$	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	468	km ²
地震モーメント M_0	$\log M_0 = 1.17M + 10.72$	1.26E+19	
モーメントマグニチュード <i>M</i> _w	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.	.7
静的応力降下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot M_0 / R^3$	3.0	MPa
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	0.9	m
短周期レベル A	$A = 2.46 \cdot 10^{10} (M_0 \cdot 10^7)^{1/3}$	1.23E+19	
微視的震源パラメータ			ケース3~6
$_{\parallel}$ 全面積 S_{a}	$S_a = \pi r^2$, $r = 7\pi / 4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	88.2 km ²	
プァ 平均すべり量 Da	$D_{\rm a} = \gamma_{\rm D} \cdot D_{\rm model}, \ \gamma_{\rm D} = 2.0$	1.8	
$ \gamma \rangle $ 実効応力 σ_a	$\sigma_{\rm a} = \Delta \sigma_{\rm a} = 7/16 \cdot M_0/(r^2 \cdot R)$	16.1	
ペ 地震モーメント M _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$ $S_{a1} = S_a \text{ or } S_a \cdot (2/3)$	4.96E+18	
ペ第 面積 S_{al} リ 1 平均すべり量 D_{al}		88.2 km ² 1.8 m	58.8 km ² 2.0 m
f 字 実効応力 σ_{al}	$D_{a1} = (\gamma_1/\Sigma \gamma_i^3) \cdot D_a$	1.8 m 16.1 MPa	2.0 m 16.1 MPa
イス計算用面積	$\sigma_{al} = \sigma_a$ $2 \text{km} メッシュサイズ$	80 km ²	60 km^2
ペ第 面積 S _{a2}	$S_{a2} = 0 \text{ or } S_a \cdot (1/3)$	- 60 Km	29.4 km ²
リュー平均すべり量 Day	$D_{a2} = (7/2) \sum_{a} (1/3)$ $D_{a2} = (7/2) \sum_{a} (1/3)$	_	1.4 m
テア 実効応力 σ_{a2}	$\sigma_{a2} = (\gamma_2/2\gamma_1)^2 D_a$ $\sigma_{a2} = \sigma_a$	_	16.1 MPa
イス計算用面積	2km メッシュサイズ	_	32 km^2
而積 C .	$S_{\rm b} = S_{\rm model} - S_{\rm a}$	379.8 km^2	379.8 km^2
背 平均すべり量D _b	$D_{\rm b} = M_{\rm 0b} / (\mu \cdot S_{\rm b})$	0.6 m	0.6 m
$_{\rm G}$ 夫別心刀 $\sigma_{ m b}$	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^3 \cdot \sigma_{\rm a}$	2.8 MPa	2.1 MPa
域 地震モーメント M _{0b}	$M_{0\mathrm{b}}=M_{0}$ - $M_{0\mathrm{a}}$	7.65E+18 Nm	7.65E+18 Nm
計算用面積	2km メッシュサイズ	388 km^2	376 km^2


アスペリティと破壊開始点の配置図

湖北山地断層帯北西部 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)

震源断層を特定した地震動予測地図 (シナリオ地震動予測地図) 湖北山地断層帯南東部

NY E SELL A	想定湖北山地断層帯地設定方法		
断層パラメータ	設定力法	南東部	
		北緯35°35′	
断層帯原点	 	東経136°7′	
活断層長さL		16 km	
気象庁マグニチュード $M_{ m JMA}$		6.8	
地震モーメント M_0	$\log M_0 = 1.17 \ M_{\rm JMA} + 10.72$	5.28E+18 Nm	
モーメントマグニチュード $M_{ m w}$	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.4	
断層モデル原点	地中の断層モデル原点位置	北緯35°35′0″	
町階モナル原点	地中の断層モデル原点位直 	東経136°7′0″	
断層モデル上端深さ	S波速度を参考に設定	2 km	
断層モデル長さ $L_{ m model}$	ルールに従い設定	20 km	
断層モデル幅 $W_{ m model}$	ルールに従い設定	16 km	
断層モデル面積 $S_{ m model}$	ルールに従い設定	320 km²	
走向 θ	長期評価の原点を結ぶ方向	N 219.3° E	
傾斜角 δ	ほぼ垂直(地表付近)	90°	

湖北山地断層帯南東部 震源断層を特定した地震動予測地図(シナリオ地震動予測地図)