南海トラフの地震活動の長期評価(第二版)について

平成25年5月24日 地震調査研究推進本部 地震調査研究推進本部

地震調査委員会は、これまでに、海域に発生するプレート間地震(海溝型地震)について、千島海溝、三陸沖から房総沖にかけての日本海溝、相模トラフ、南海トラフ、日向灘及び南西諸島海溝周辺、日本海東縁部を対象に長期評価を行い、公表してきた。

しかし、2011年3月11日に発生した東北地方太平洋沖地震のような超巨大地震を評価の対象とできなかったことを始め、海溝型地震の長期評価に関して様々な課題が明らかとなったことから、地震調査委員会では、現行の長期評価手法を見直し、新たな手法の検討を行うこととした。

新たな長期評価手法については検討中であるが、南海トラフにおいて大地震が発生すると、九州から関東の広範囲にわたり、大きな被害が懸念されるため、早急に防災対策を進める必要がある。そのため、これまでに得られた新しい調査観測・研究の成果を取り入れ、南海トラフの地震活動の長期評価を暫定的に改訂し、第二版としてとりまとめた。

なお、評価に用いられたデータは量及び質において一様ではなく、そのためにそれぞれの評価の結果についても精粗がある。平成15年以降に発表した長期評価については、評価の結果の信頼度を付与してきたが、今回の評価では、確率の評価に用いたモデルが確立されていないこと等から、信頼度は付与していない。

平成25年5月24日地震調査研究推進本部地震調査研究推進本部

南海トラフの地震活動の長期評価(第二版)

日向灘から駿河湾までの太平洋沿岸を含む南海トラフ沿いの地域では、ここを震源域として大地震が繰り返し発生していることが知られている。本報告書は、南海トラフで発生するプレート境界面及び分岐断層による地震について、長期的な観点で地震発生の可能性、震源域の形態等について評価してとりまとめたものである。評価に当たっては、これらの領域に発生した地震について行われたこれまでの調査研究の成果を参考にした。

1. はじめに

南海トラフは、日本列島が位置する大陸のプレートの下に、海洋プレートのフィリピン海プレートが南側から年間数cmの割合で沈み込んでいる場所である(図1)。この沈み込みに伴い、2つのプレートの境界にはひずみが蓄積されている。過去1,400年間を見ると、南海トラフでは約100~200年の間隔で蓄積されたひずみを解放する大地震が発生しており、近年では、昭和東南海地震(1944年)、昭和南海地震(1946年)がこれに当たる。昭和東南海地震及び昭和南海地震が起きてから70年近くが経過しており、南海トラフにおける次の大地震発生の可能性が高まってきている。

地震調査委員会ではこれまでに、海域で発生するプレート境界地震(海溝型地震)の長期評価を行ってきており、南海トラフの地震については、2001年に長期評価を取りまとめた。しかし、その後、日本海溝で発生する地震の評価において、2011年3月11日に発生した東北地方太平洋沖地震のような超巨大地震を的確に評価できていなかったことをはじめ、海溝型地震の長期評価に関して様々な課題が明らかとなったことから、地震調査委員会では、現行の長期評価手法を見直し、新たな手法の検討を行うこととした。

しかしながら、南海トラフにおいて大地震が発生すると、九州から関東の広範囲にわたり、大きな被害が懸念されるため、早急に防災対策を進める必要がある。このため、新たな長期評価手法の検討途中ではあるが、これまでに得られた新しい調査観測・研究の成果を取り入れ、このたび、南海トラフの地震活動の長期評価を暫定的に改訂することとした。

南海トラフの地震については、2001 年に長期評価を行って以降、「東海・東南海・南海 地震の連動性評価のための調査観測・研究」などの成果をはじめとして、数多くの知見や 観測データが蓄積されている。こうした最近の調査観測・研究の成果により、南海トラフ で発生する大地震は、従来考えられていたよりも、多様かつ複雑であることが明らかとなってきた。例えば、津波堆積物の調査研究から、今まで既往最大と考えられていた宝永地 震(1707年)に伴って発生した津波より巨大な津波が、約2,000年前に起きた可能性があることが指摘されている。また、宝永地震(1707年)と同程度の規模の地震が300~600年間隔で起きていることが明らかとなってきた。

以上のように、調査研究が進むにつれ、従来考えられてきたような、「南海トラフで発生する地震は 100~ 200 年に1回、ほぼ同じ領域で同様の規模で繰り返し発生する」という固有地震モデルが必ずしも成立しているとは限らないことが分かってきた。このため、今回の長期評価の改訂では、上記のような知見を考慮し、とりわけ、以下の点に留意し評価を行った。

- ① これまで考えられてきた固有地震モデルに基づく評価ではなく、発生しうる 最大クラスも含めた地震の多様性を考慮した評価を試みる。
- ② 不確実性が大きくても防災に有用な情報は、これに伴う誤差やばらつき等を 検討した上で、評価に活用する。
- ③ データの不確実性などにより、地震の発生確率などは、解釈が分かれる場合がある。そのように解釈が分かれるものについては、複数の解釈について併記する。

今回改訂を行った南海トラフの地震活動の長期評価は、主文と説明文から構成される。 本主文は、地震調査委員会として南海トラフの地震活動に対してどのような評価を行っ たか、簡潔にまとめたものである。

説明文では、南海トラフの地震活動に関する複数の学説の提示や、それらの不確実性、 問題点などを含め、評価内容を詳細にまとめている。

2. 評価対象領域について

南海トラフは、四国南岸から駿河湾沖に至る約700kmの細長い海盆である。

南海トラフで発生する大地震は、四国や紀伊半島が位置する大陸のプレートと、その下に沈み込むフィリピン海プレートの境界面(以下「プレート境界面」という)がすべることにより発生する。また、プレート境界面から陸のプレート側に枝分かれした断層(以下「分岐断層」という)がすべることにより、海洋底の地殻を上下方向に大きく変動させたり、局地的に強い揺れを生じたりすることもある。この他にも、フィリピン海プレート内で発生する地震や海底活断層で発生する地震などがある。

本評価では、これらの地震のうち、プレート境界面及び分岐断層による地震について評価を行った。評価対象とした領域は、地形(幾何形状)の変化、力学条件の変化、既往最大地震の震源域、現在の地震活動などを考慮し、以下の範囲とした(図1の赤太線で囲まれた範囲)。

東端:富士川河口断層帯の北端付近

西端:日向灘の九州・パラオ海嶺が沈み込む地点

南端:南海トラフ軸

北端:深部低周波微動が起きている領域の北端

九州・パラオ海嶺が沈み込む地点より南西側は、長期評価に必要な科学的知見の収集・整理が不十分であることから、今回の評価対象地域から除いた。

次に、南海トラフで発生する地震の震源域を類型化するため、評価対象領域を南海トラフの走向及びフィリピン海プレートの沈み込む方向に、更に幾つかの領域に分割した。

(1) 南海トラフの走向方向(東西方向)

これまでに得られている科学的知見より、地震の破壊の開始点、あるいは終点は、 地形境界に対応する場合が多いことが分かっている。そこで、走向方向は、地形の 境界に基づき以下の6領域に分割した。

- 都并岬 ~ 足摺岬
- ・足摺岬 ~ 室戸岬
- ・室戸岬 ~ 潮 岬
- ・潮 岬 ~ 大王崎
- •大王崎 ~ 御前崎
- ・御前崎 ~ 富士川

都井岬~足摺岬の領域で発生すると想定されている、日向灘のM7クラスの地震については、今回の評価からは除き、別途評価を行う。

(2) フィリピン海プレートの沈み込み方向(南北方向)

プレート境界の振る舞いに関するこれまでの科学的知見に基づき以下の3つの領域に分割した。

- ・プレート境界の浅部で、すべりが生じると大きい津波が発生する可能性のある領域
- ・従来、大地震の震源域になると評価されてきた領域(固着が強い領域)
- 従来の震源域の深部から深部低周波微動の発生領域

今回の長期評価では、分割したそれぞれの領域が個別に、あるいは複数が一体となって 地震を発生させる可能性があることを考慮した。今回の評価対象領域には、中央防災会議 が想定した「想定東海地震」の震源域も含まれている。

なお、図1に示した領域全体がすべることで発生する地震が、本評価で想定する南海ト

ラフの「最大クラスの地震」である。この「最大クラスの地震」の震源域は、過去の地震、フィリピン海プレートの構造、海底地形等に関する特徴など、現在の科学的知見に基づいて推定したものである。最大クラスの地震が発生すれば、震源域の広がりから推定される地震の規模はM9クラスとなる。

3. 南海トラフで発生する地震の多様性について

歴史記録によると、南海トラフで発生した大地震は、首鷹 (天武) 地震 (684 年) まで 遡って確認されている。図 2 に、白鳳 (天武) 地震が発生した 684 年から現在までの約 1,400 年間に、南海トラフで発生した大地震の震源域の時空間分布図を示す。南海地域(評価対象領域のうち、潮岬の東側の領域)と東海地域(評価対象領域のうち、潮岬の東側の領域)で、若干の時間差(数年以内)をおいて地震が発生することがある。この場合は同じ地震サイクルの中で発生したと見なし、今回の評価では、南海トラフにおいて少なくとも 9 回の大地震サイクルがあった可能性が高いと判断した。発生した年が古い大地震については、史料の不足により見落としている可能性があるが、正平 (康安) 地震 (1361 年) 以降は、見落としはないと考えられる。また、震源域の広がりについては、史料の記述の不確実性などから、かなり不確かさがあるため、図 2 の時空間分布図には、それぞれの地震の震源域について、確実度に応じて表記を変えている。正平 (康安) 地震 (1361 年) 以降に発生した大地震の発生年月日及び推定された地震の規模を表 1 に示す。

図2より、過去に南海トラフで発生した大地震は、その震源域の広がり方に多様性があることが分かる。さらに、図2及び表1から、南海地域における地震と東海地域における地震が、同時に発生している場合と、若干の時間差(数年以内)をもって発生している場合があることが分かる。東海地域の地震でも、御前崎より西側で、断層のすべりが止まった昭和東南海地震(1944年)と、駿河湾の奥まですべりが広がったと考えられている姿故東海地震(1854年)では、震源域が異なる。また、宝永地震(1707年)の震源域は、津波堆積物などの調査結果から、昭和南海地震(1946年)や安政南海地震(1854年)の震源域より西に広がっていた可能性が指摘されている。慶長地震(1605年)は揺れが小さいが、大きな津波が記録されている特異な地震であり、明治三陸地震(1896年)のような津波地震であった可能性が高いとされる。また、南海トラフでは、分岐断層が確認されており、過去にはプレート境界だけではなく、分岐断層がすべることによる地震も起きていたと指摘されている。

次に、海底堆積物や津波堆積物などの地質学的な証拠から明らかになってきた地震の痕跡を取りまとめて図3に示す。それらの地震の痕跡は、約5,000年前まで遡ることができ、 史料から推定することができる白鳳(天武)地震(684年)より前にも、南海トラフで大地震が繰り返し起きていたことが分かった。また、津波堆積物の痕跡が残る宝永地震(1707年)クラスの大地震は、300~600年間隔で発生していることが明らかとなった。しかし、 津波堆積物から推定される地震の年代範囲が幅広いため、異なる地点の津波堆積物の対応 関係を明らかにし、先史地震の震源域の広がりを正確に把握することは困難である。なお、 高知県の蟹ヶ池では、約 2,000 年前の津波堆積物がその年代の前後の津波堆積物に比べて 厚く、既往最大と言われている宝永地震(1707 年)より大きな津波が起きた可能性も指摘 されている。

上述のように、南海トラフで発生する大地震は、前回の長期評価で仮定されたような、「地震はほぼ同じ領域で、周期的に発生する」という固有地震モデルでは理解できず、多種多様なパターンの地震が起きていることが分かってきた。

4. 南海トラフで次に発生する地震について

前章で述べたように、過去に南海トラフで起きた大地震は多様性がある。そのため、次に発生する地震の震源域の広がりを正確に予測することは、現時点の科学的知見では困難である。

一方、歴史記録より、南海トラフでは、白鳳(天武)地震(684 年)以後、繰り返し M 8 クラスの大地震が起きていることが分かっている。それらの歴史地震の多くは、南海地域で発生する地震、東海地域で発生する地震、両域にまたがる地震(両者が同時に発生する)に大別される。歴史地震の震源域(図 2)を見ると、地震が同時に発生しない場合であっても、数年以内の差でもう一方の領域で地震が発生している。繰り返し間隔の長さと比較すると、これらはほぼ同時に活動していると見なせる。そこで、本評価では、南海トラフをこれまでのような南海・東南海領域という区分をせず、南海トラフ全体を一つの領域として考え、この領域では大局的に 100 ~200 年で繰り返し地震が起きていると仮定して、地震発生の可能性を評価した。

本評価では、正平(康安)地震(1361年)以降の地震を用いた。また、慶長地震(1605年)は揺れの強さに比べて津波高が大きいので、震源域が他の地震とは異なり、海溝寄りである可能性もある。このため、慶長地震(1605年)を他の地震と同列に扱う場合と、除外する場合の2ケースで地震発生の可能性を評価した。図4に、正平(康安)地震(1361年)以降、南海トラフで起きた6回【5回】の大地震の発生間隔を示す。発生間隔の平均値は117年【146年】となるが、実際に起きた地震の発生間隔は約90年から約150年【約210年】とばらついている(【 】内は慶長地震(1605年)を除いた場合)。過去には最短で約90年の間隔で大地震が発生した例がある。

過去に起きた大地震の発生間隔は、既往最大と言われている宝永地震(1707年)と、その後発生した安政東海・南海地震(1854年)の間は147年であるのに対し、宝永地震より規模の小さかった安政東海・南海地震とその後に発生した昭和東南海(1944年)・南海地震(1946年)の間隔は約90年と短くなっている(図2)。このことは、宝永地震(1707年)

以降の活動に限れば、次の大地震が発生するまでの期間が、前の地震の規模に比例するという時間予測モデルが成立している可能性を示している。時間予測モデルには、様々な問題点があることが指摘されているものの(説明文第4章参照)、このモデルが成立すると仮定した場合、昭和東南海・南海地震の規模は、安政東海・南海地震より小さいので、室津港(高知県)の隆起量をもとに次の地震までの発生間隔を求めると、88.2年となる(図5)。評価時点(2013年1月1日)では昭和東南海・南海地震の発生から既に約70年が経過しており、次の大地震発生の切迫性が高まっていると言える。

次に、将来南海トラフで大地震が発生する確率の評価について述べる。上述したように、過去に起きた大地震の震源域の広がりには多様性があり、現在のところ、これらの複雑な発生過程を説明するモデルは確立されていない。そのため、従来の評価方法を踏襲し、前の地震から次の地震までの標準的な発生間隔として、時間予測モデルから推定された88.2年を用いる。地震の発生間隔の確率分布はBPT (Brownian Passage Time)分布に従うと仮定して計算を行った。その結果を表2に示す。南海トラフで大地震が発生する可能性は、時間が経過するにつれ高まり、表2から分かるように、今後30年以内の地震発生確率は60~70%となる。評価の信頼度は、まだモデルが確立されていないことより、不明とした。なお、時間予測モデルを用いない場合の確率については説明文(第4章)に記載した。

前項で述べた最大クラスの地震については、過去数千年間に発生したことを示す記録はこれまでのところ見つかっていない。そのため、定量的な評価は困難であるが、地震の規模別頻度分布から推定すると、その発生頻度は100~200年の間隔で繰り返し起きている大地震に比べ、一桁以上低いと考えられる。

また、前回評価で指摘したように、南海トラフ沿いの大地震の発生前後に、中部圏を含む西日本で、地震活動が活発化した事実やそのことを示す調査研究成果が複数あることに注意しておく必要がある。

5. 今後に向けて

2001年にとりまとめた前回の長期評価では、ほぼ同じ領域で同じタイプの地震が周期的に発生する固有地震モデルに基づいた評価を行った。しかしながら、これまでに述べたとおり、最近の調査観測・研究により、南海トラフの地震は震源域や発生間隔が多様であることが明らかとなってきている。こうした知見を踏まえ、今回の長期評価の改訂では、震源域の広がりについては多様性を考えた。次に発生する地震の評価については、多様性を説明するモデルが確立されていないことより、従来の手法を踏襲した。

将来的には、このような多様性を説明する地震の発生モデルに基づき、長期評価を行う 必要がある。そのため、最新の学術研究の成果を取り入れるとともに、以下のような調査 研究を推進し展開していくことが重要となる。

○過去に起きた地震像を明らかにするための調査研究の推進

歴史記録や津波堆積物など過去地震の痕跡データの収集を網羅的に行い、地震動や 津波のシミュレーションとの比較により過去に起きた大地震の地震像を明らかにする 必要がある。とりわけ、300~600年の繰り返し間隔で起きていると推定されている宝 永地震(1707年)タイプの地震の地震像や、最大クラスの地震が過去に起きていたか 否かは、極めて重要な情報である。また、正平(康安)地震(1361年)以前は、繰り 返し間隔が約200年と、それ以降に比べて長いように見えるが、地震の見落としがな いか調査する必要がある。

〇大地震の震源域となりうる領域を規定するための調査研究の推進

大地震の震源域となりうる領域を規定するためには、過去地震の地震像を明らかにする、あるいは地殻変動をモニターするなどの調査研究に加え、地下構造や海底の変動地形の特徴を把握する調査研究が必要である。長期評価に必要な科学的根拠が不十分であるため、本評価では暫定的に定めることとした評価対象領域の東端や西端、特に九州・パラオ海嶺が沈み込む地点より西側の調査研究を推進することは、最大クラスの地震の震源域を考える上で重要である。

〇現在のプレート境界におけるひずみ蓄積状況をモニターするための調査研究の推進

南海トラフの地震発生場の理解を深め、長期評価の信頼性を高めるためには、ひずみの蓄積がどのように進行しているかについて現状を把握することが不可欠である。このための観測方法としては、震源域の真上の海域で地殻変動を観測することが特に重要である。近年、海底の地殻変動を測定する技術は急速に発展してきているが、観測期間は短く、観測点数も限られている。とりわけ、トラフ軸付近は、東北地方太平洋沖地震でも明らかなように、大きな津波を引き起こす可能性があるが、地殻変動の観測はほとんど行われていない。今後、既存の観測点における海底地殻変動のデータを蓄積するとともに、トラフ軸に近い領域を含め、観測データの時空間密度を向上させる必要がある。さらに、深部低周波微動発生域においても、スロースリップの高精度検知を進めることにより、当該地域でのひずみの蓄積状況をモニターする手法を確立することが求められる。

〇地震の多様性を取り入れた長期評価の信頼性の向上

現在、過去に起きた大地震の繰り返し間隔と最新活動時期を用いて、次に発生する 地震の長期評価を行っている。今回評価を行った南海トラフの地震は、物理的な背景 を加味した時間予測モデルを用いているが、モデルの妥当性に関していくつかの問題 点が指摘されている。今後、時間予測モデルの妥当性の検討も含め、地震の多様性を 考慮した、ひずみの蓄積と地震の発生を結びつける物理的なモデルを構築していく必 要がある。 また、物理的なモデルに基づき、様々な条件で計算を行った地震発生シナリオの中から、過去の地震像や現在の観測記録と矛盾しないものを絞り込み、長期評価の信頼性を高めていく必要がある。

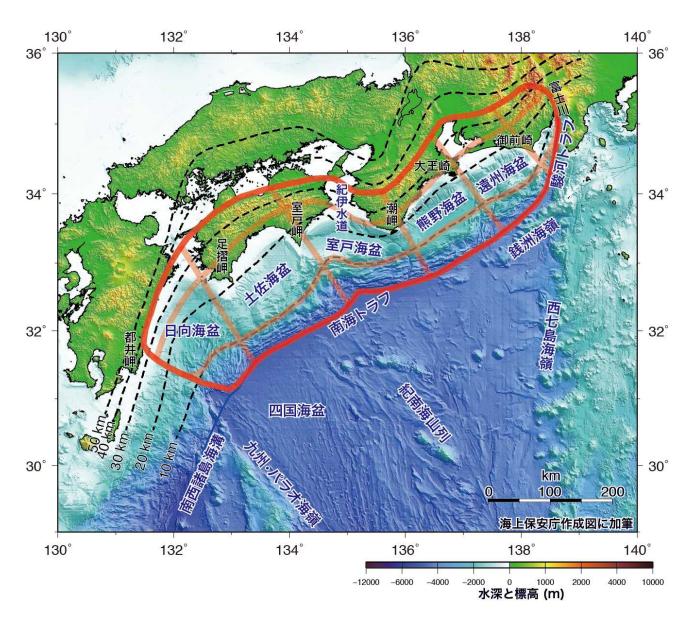


図1 南海トラフの評価対象領域とその区分け

- ・赤線は最大クラスの地震の震源域を示す。
- ・薄い赤線は震源域を類型化するために用いた領域分けの境界線を示す。
- ・破線は本評価で用いたフィリピン海プレート上面の等深線を示す。

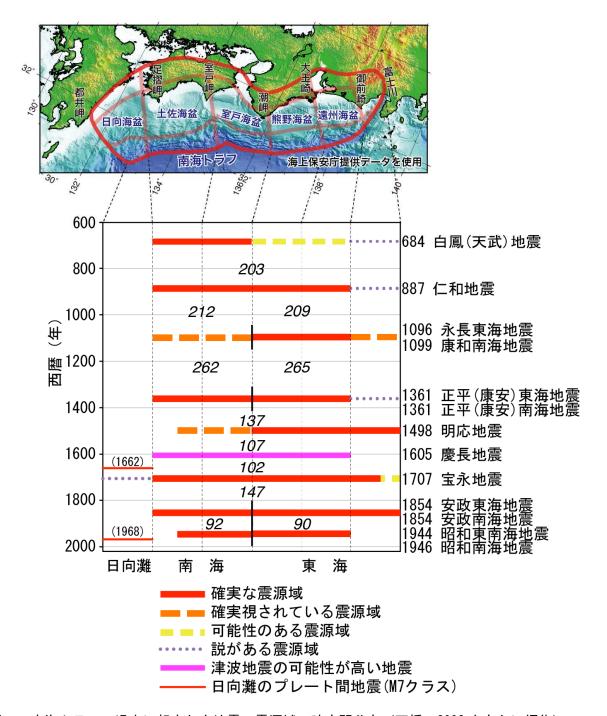


図2 南海トラフで過去に起きた大地震の震源域の時空間分布(石橋, 2002 をもとに編集)

- ・白鳳(天武)地震(684年)以降の地震を示している。
- ・図中イタリック体で表した数字は、地震の発生間隔(年)を示す。
- ・震源域は地形の境界(都井岬、足摺岬、室戸岬、潮岬、大王崎、御前崎、富士川)で東 西方向に区切っている。
- ・黒の縦棒は、南海と東海の地震が時間差(数年以内)をおいて発生したことを示す。

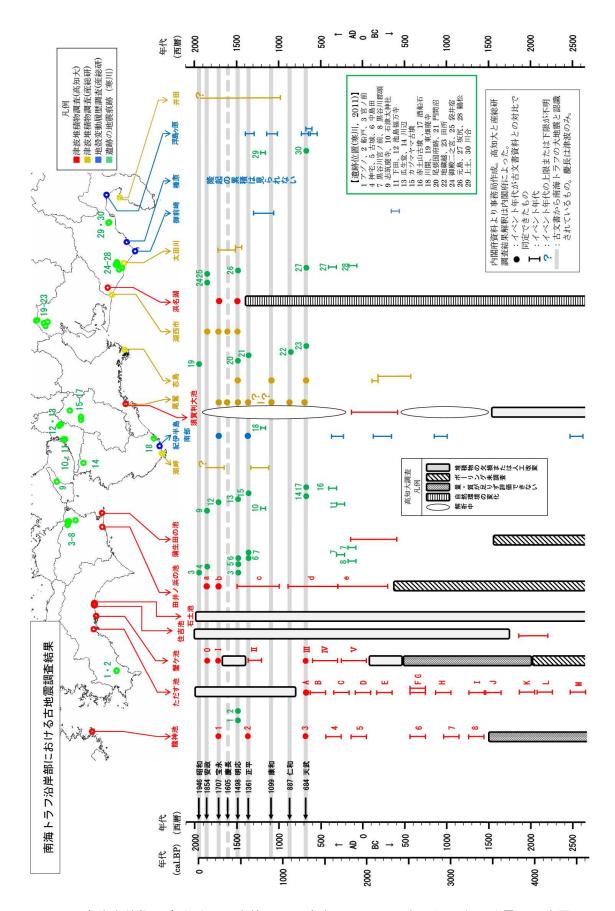


図3 津波堆積物、変動地形調査等による南海トラフで発生した過去の地震の発生履歴 ・歴史地震を灰色太線で示す。慶長地震は震源域が異なる可能性があることより破線にしてある。 (内閣府, 2011 に加筆修正)

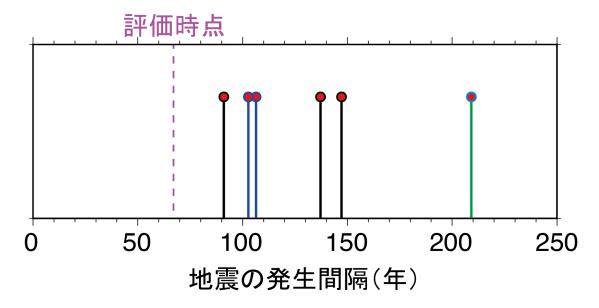


図4 南海トラフで起きた大地震の発生間隔

・正平 (康安) 地震 (1361 年) 以降の 6 地震を使った場合 (ケース①) と、その中から津波地震といわれている慶長地震 (1605 年) を除いた 5 地震を使った場合 (ケース②) の 2 パターンを示した。

ケース① : 黒色+青色 (6地震を用いた5つの発生間隔) ケース② : 黒色+緑色 (5地震を用いた4つの発生間隔)

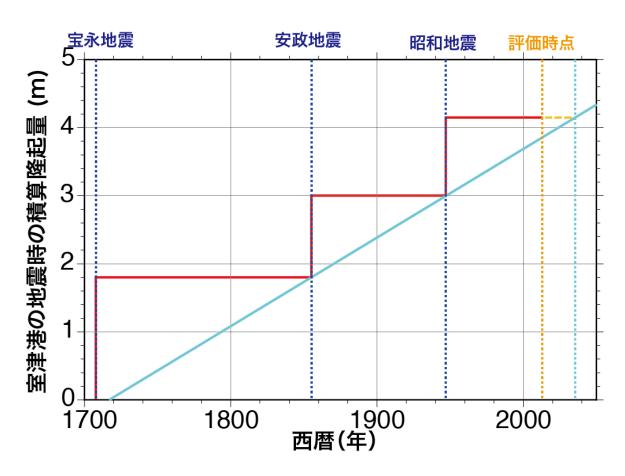


図5 室津港(高知県)における南海地震時の隆起量と地震発生間隔との関係 階段状の赤線の縦軸が地震によって隆起した量を示す。水色の線は地震時の積算隆起 量の平均隆起速度。このモデル(時間予測モデル)によると、次回の南海トラフで発 生する大地震は昭和の地震の後、約90年後に発生することになる。

表 1 南海トラフ沿いの大地震の規模

	2000年11日日	規模		
	発生年月日	M	Mt	Mw
正平(康安)東海地震	1361/08/0?			
正平(康安)南海地震	1361/08/03	81/4~8.5		
^{めいおう} 明応地震	1498/09/20	8. 2~8. 4	8. 5	
慶長地震	1605/02/03	7. 9	8. 2	
宝永地震	1707/10/28	8. 6	8. 4	
安政東海地震	1854/12/23	8. 4	8. 3	
安政南海地震	1854/12/24	8. 4	8. 3	
昭和東南海地震	1944/12/07	7. 9	8. 1	8. 1~8. 2
昭和南海地震	1946/12/21	8.0	8. 1	8. 2~8. 5

※マグニチュードとして、宇津(1999)の表に記述されたマグニチュード (M)、津波の大きさから決めた津波マグニチュード (Mt)、各種研究成果を踏まえ、地震モーメント等を利用して推定したモーメントマグニチュード (Mw)を示す。正平 (康安)東海地震の発生年月日は南海地震と同時に起きた (8/3) という説と、2日前に起きた (8/1) という説があるため、日の表記を "?"にした。

表2 南海トラフで発生する地震の確率(時間予測モデル)

項目	将来の地震発生確率等	備考	
今後 10 年以内の発生確率	20%程度	時間予測モデルによる「前回から次回まで	
今後 20 年以内の発生確率	40~50%	の標準的な発生間隔」88.2年及び発生間	
今後 30 年以内の発生確率	60 ~ 70%	隔のばらつき α=0.24 と 0.20 を BPT 分布	
今後 40 年以内の発生確率	80%程度	モデルに適用して発生確率を算出(評価時	
今後 50 年以内の発生確率	90%程度以上	点は 2013 年 1 月 1 日現在)	
地震後経過率	0. 76	経過時間67.0年を発生間隔88.2年で除し	
		た値	
次の地震の規模	M8~9クラス	震源域の面積と地震の規模の関係式より	
		推定した値を用いた	

※次に発生する可能性のある地震の中に最大クラスの地震も含まれるが、その発生頻度は100~200年の間隔で繰り返し起きている大地震に比べ、一桁以上低いと考えられる。