付録:海溝型地震の強震動評価のレシピ*

ここでは海溝型地震の強震動評価のレシピとして、これまでの地震調査委員会強震動評価部会(および強震動予測手法検討分科会)の検討結果から、強震動評価手法の構成要素となる震源特性、地下 構造モデル、強震動計算方法、予測結果の検証の現状における手法や設定にあたっての考え方につい て取りまとめた。

今後の強震動評価部会および強震動予測手法検討分科会における強震動評価作業における検討によ りレシピには修正が加えられ、「海溝型地震の強震動評価のレシピ」は改訂されることとなる。

1. 震源特性

震源特性の設定においては、評価対象を断層全体の形状や規模を示す巨視的震源特性、主として震 源断層の不均質性を示す微視的震源特性、破壊過程を示すその他の震源特性の3つに分けて設定を行 い、特性化震源モデルを作成する。以下に説明する震源特性パラメータ設定方法は、基本的にはある 想定される地震に対して最初に特性化震源モデルを構築する際に用いる設定方法であり、強震動評価 初期段階における震源特性パラメータの設定が、一貫性をもってなされることを目的としている。

一方、海溝型地震の活動間隔は、活断層で発生する地震と比べ短いために、海域によっては過去に 発生した地震の状況を示す情報が残されており、それらを活用することできる。4章(予測結果の検 証)でも説明するように、過去の地震関連データを用いてそれぞれの段階で検証を行い、必要があれ ば震源特性パラメータの見直しを行う。このような震源特性見直しの段階では観測波形等を説明でき る震源特性パラメータが求められることより、以下のレシピ(設定方法)を拡大する形で検討するこ ともある。この場合、過去の地震関連データ(地震規模,震源域,地震波形記録,震度,被害など) すべてが整合性あるものとはならない可能性もあり、解析の目的に応じて優先順位をつけてデータを 採用することが必要となる。

1-1 巨視的震源特性

断層の巨視的震源特性のパラメータとして、

- ・ 断層の幾何学的位置(基準位置と走向、深さ)
- 断層の大きさ・地震規模
- ・ 断層の平均すべり量

を設定する必要がある。それぞれのパラメータの設定方法について、以下に説明する。

(1) 断層の幾何学的位置(基準位置と走向、深さ)

断層の幾何学的位置については、過去の地震の震源域が推定されている場合には、その位置を基に 設定する。深さについては、弾性波探査や微小地震分布等で推定されている想定震源域のプレート上 面の深さ分布により、地震発生域の上端から下端にかけて設定する。

地震調査委員会長期評価部会で決定された震源の形状評価があれば、その形状評価を推定根拠に留 意して利用するのが望ましい。

(2) 断層の大きさ・地震規模

震源断層の大きさ・地震規模については、下記のいずれかの方法により設定する。

- (1)により震源域を明確に設定して、その範囲により面積を算出し、地震規模-断層面積の 経験的関係から地震規模を推定する。
- 過去の地震から想定されている値を基に地震規模を設定し、地震規模-断層面積の経験的関係

^{*「}宮城県沖地震を想定した強震動評価について」を公表した平成15年6月18日時点のものである。

から断層面積を設定する。

また、上記の地震規模–断層面積の経験式については、過去の地震のデータがある程度得られている場合には、地域性を考慮した式を用いる。例えば、Kanamori and Anderson(1975)と同様に円形割れ目を仮定した次の関係式(Eshelby,1957)を基に震源域の地震の平均応力降下量 $\Delta \sigma$ を推定することで地域的な地震モーメント Mo (dyn・cm^{*}) –断層面積 S の関係式を設定する。

Mo =(16/(7 ·
$$\pi^{3/2}$$
)) · Δ σ · S^{3/2} -----(1)

一方、過去の地震のデータがあまり得られていない場合には、平均的な特性を示す地震規模–断層 面積(例えば、宇津,2001;石井・他,2000)または地震モーメント–断層面積(例えば、佐藤,1989; Yamanaka and Shimazaki,1990)などの経験式を用いる。ただし、これらの式を利用するにあたって は経験式のデータセットとなる震源断層の面積がどのように想定されているか留意する必要がある。

この項目についても、地震調査委員会長期評価部会で決定された震源の形状評価がある場合には、 その形状評価を推定根拠に留意して利用するのが望ましい。

(3) 平均すべり量

断層全体の平均すべり量 D と総地震モーメント Mo の関係は、震源断層の面積 S と剛性率 μ を用いて、

$$M_0 = \mu \cdot D \cdot S \quad (2)$$

で表される。剛性率については、地震発生層の密度、S波速度から算定する。

1-2 微視的震源特性

断層の微視的震源特性のパラメータとして、

- アスペリティの面積・個数
- ・ アスペリティの幾何学的位置
- ・ アスペリティ、背景領域の平均すべり量
- ・ アスペリティ、背景領域の実効応力
- fmax
- すべり速度時間関数

を設定する必要がある。

(1) アスペリティの位置・個数

アスペリティの位置については、最近の研究(菊地・山中,2001)より地震によって変化せずに 同じ場所となる可能性が高いことがわかってきたため、近年、想定する震源域で地震が発生していれ ば、その観測記録の解析からアスペリティの位置を推測する。また、近年の観測記録がなくても、ア スペリティではプレート間のカップリングレートが周辺より高いと考えられることから、地殻変動デ ータよりバックスリップの分布が推定できれば、バックスリップの大きい箇所がアスペリティの位置 になると想定される。

アスペリティの個数は、アスペリティの位置が推定されている場合は、結果的に想定する震源域に 含まれるアスペリティの数に相当する。一般的にはアスペリティの数は想定する震源域・地震規模が 大きくなるにつれて、多くなる傾向にある。[例えば、鳥取県西部地震(Mw=6.8)が2個、兵庫県南部 地震(Mw=6.9)が3個に対し、トルコ・コジャエリ地震(Mw=7.4)が5個、台湾・集集地震(Mw=7.6)

^{*} 本文ではモーメントの単位に N・m を用いる。 dyn・cm=10⁻⁷N・m

が6個(Iwata et al.,2001; 宮腰・他,2001)]

(2) アスペリティの面積

アスペリティの総面積は、強震動予測に直接影響を与える短周期領域における加速度震源スペクト ルのレベル(以下、短周期レベルと言う)と密接に関係があることから、まず短周期レベルの値を推 定してから求める。短周期レベルは、表層地盤の影響が少ない固い地盤の観測点の地震波形や表層地 盤の影響が定量的に把握できている観測点の地震波形を基に推定することができるが、そのような条 件の良い波形が得られているのは比較的最近であり、ほとんどの地域では最新活動の地震による短周 期レベルの推定は行われていない。一方、震源域を限定しなければ、最近の地震の解析結果より短周 期レベルと地震モーメントとの経験的関係が求められている。短周期レベルの値は、条件に応じて下 記のいずれかの方法により求める(入倉・他, 2002)。

・震源域の最新活動の地震の短周期レベルが推定されていない場合には、次式に示す壇・他(2001) による地震モーメント Mo と短周期レベル A(dyn・cm/s²=10⁻⁷N・m/s²)の経験的関係により短周 期レベルを設定する。

A=2.46 \cdot 10¹⁷ \cdot Mo^{1/3} (3)

・震源域の最新活動の地震の短周期レベルが推定されている場合には、その推定値と地震モーメントとの経験的関係の傾向を参照して、想定する地震の地震モーメントに応じた短周期レベルを 設定する。

アスペリティの総面積 Sa は、上記によって推定された短周期レベル A から次の(4)式より算出される。ここでは、便宜的に震源断層の形状を半径 R の円形割れ目であるとするとともに、アスペリ ティは半径 r の円形割れ目が一つあるとして、アスペリティの総面積 Sa(=π×r²)を求める。

 $\mathbf{r} = (7 \pi / 4) \cdot (\mathbf{M}_0 / (\mathbf{A} \cdot \mathbf{R})) \cdot \beta^2 \qquad -----(4)$

(4)式は、次の(5)式(Boatwright, 1988)及び(6)式(壇・他, 2001)から導出できる。

 $M_{0}=(16/7) \cdot r^{2} \cdot R \cdot \Delta \sigma a \qquad (5)$ $A=4 \pi \cdot r \cdot \Delta \sigma a \cdot \beta^{2} \qquad (6)$

ここで、Mo は地震モーメント、 $\Delta \sigma a$ はアスペリティの静的応力降下量、 β は震源域のS 波速度である。

一方、最近の研究成果から、7つの海溝型地震によるアスペリティ総面積の占める割合は断層総面 積の35%±11%程度(石井・他,2000)であり、拘束条件とはならないがこうした値も参照しておく必 要がある。

アスペリティが複数ある場合、各アスペリティへの面積の割り振りは、最新活動の地震のアスペリ ティの大きさやバックスリップの大きい領域に応じて設定するのが望ましい。そのような分解能がな い場合には、最近の研究成果からアスペリティが2つの場合は 2:1、アスペリティが3つの場合は 2:1:0.5 となる(石井・他, 2000)との見方も参照して設定する。

注:地震規模と断層面積が与えられ、さらに短周期レベルが与えられると、上の関係式からアス ペリティの総面積と実効応力が一義的に与えられる。それらのパラメータを用いて計算された地 震波形や震度分布が検証用の過去の地震データと一致しないときは、第一義的に推定される地震 規模と短周期レベルを優先してパラメータを設定する。過去の地震波形データがある場合にアス ペリティ面積は波形のパルス幅などから推定が可能である。

(3) アスペリティ・背景領域の平均すべり量

アスペリティ全体の平均すべり量 Da は震源断層全体の平均すべり量 D のα倍とするが、最近の 海溝型地震の解析結果を整理した結果(石井・他, 2000)を基にするとα=2となる。

$$Da = \alpha \cdot D \quad ----(7)$$

背景領域の平均すべり量 Db は全体の地震モーメント Mo からアスペリティの地震モーメント Moa を除いた背景領域の地震モーメント Mob を算定することにより、背景領域の面積 Sb から算出される。

ここで、μは剛性率である。

個々のアスペリティの平均すべり量は、個々のアスペリティを便宜的に円形割れ目と仮定した場合 に、個々のアスペリティの面積 Sai(i番目のアスペリティの面積)から算定される半径 ri(i番目 のアスペリティの半径)との比を全てのアスペリティで等しい(Dai/ri=一定)と経験的に仮定し、 次式により算定する。

 $Da_{i} = (\gamma_{i} / \Sigma_{\gamma_{i}}) \cdot Da \quad (11)$

ここで、 γ_iは **r**_i/**r** であり、Daiは i 番目のアスペリティの平均すべり量である。また、**r** は上の「アスペリティの面積」で述べたアスペリティ全体の便宜的な半径である。

(4) アスペリティの平均応力降下量・実効応力及び背景領域の実効応力

アスペリティの平均応力降下量Δσαは、(5)式を変形して求めた次の(12)式から算定される。

 $\Delta \sigma a = (7/16) \cdot Mo/(r^2 \cdot R) \quad (12)$

このため、震源断層全体の地震モーメントが一定の条件の下でも、アスペリティの総面積あるいは 震源断層の面積が変化すると平均応力降下量が変化することになる。アスペリティが複数ある場合に は、特にその震源域の詳しい情報がない限り、各アスペリティの平均応力降下量はアスペリティ全体 の平均応力降下量に一致し、すべて等しいと仮定する。さらに、アスペリティの実効応力 σ aは、経 験的にその平均応力降下量とほぼ等しいと仮定する。

背景領域の実効応力σbは、

実効応力∝すべり速度∝(すべり量/立ち上がり時間)

立ち上がり時間=震源断層(矩形の場合)の幅/(破壊伝播速度×2)

の比例関係・近似関係により、アスペリティの個数nが1つの場合、複数の場合それぞれについて、 アスペリティ領域の幅 Wa を用いて、

$$\sigma b = \begin{cases} (Db/Wb) / (Da/Wa) \cdot \sigma a & (n=1) \\ (Db/Wb) \cdot (\pi^{1/2}/Da) \cdot r \cdot \Sigma \gamma_{i^{3}} \cdot \sigma a & (n>1) \end{cases}$$
(13)

ここでWb は背景領域が矩形とした場合の幅であるが、震源断層が不整形の場合には、便宜的に震源 断層の面積 S から、Wb=(S / 2)^{1/2}の式より求める。

(5) fmax

fmax については震源に依存するものであるのか、地点に依存するものであるのか、実際のところ、 十分に解明されていない。したがって、強震動評価の対象周波数帯が 0.1~10Hz であることから、

レシピ・4

fmax を当初は想定せずに強震動評価を行い、その結果、過去の現象と系統だった違いがあれば、その時点で fmax を考慮する。その際には、地域性を考慮して設定するのが望ましいが、そのようなデータが想定されている地域は現状ではほとんどないといえる。そこで、現実的には他地域の事例を参照しながら、過去の現象を説明できるような値に設定する。

(6) すべり速度時間関数

中村・宮武(2000)の近似式を用いる。中村・宮武(2000)の近似式は、

 $dD(t)/dt = \begin{cases} 2Vm/td \cdot t(1-t/2td) & (0 < t < tb) \\ b/(t \cdot \epsilon)^{1/2} & (tb < t < tr) & - \\ c \cdot ar(t \cdot tr) & (tr < t < ts) \end{cases}$ ——— (14) (t < 0 or t > ts)ただし、 $\epsilon = (5tb-6td)/(2(1-td/tb))$ b=2Vm \cdot tb/td \cdot (tb- ε)^{1/2} \cdot (1-tb/2td) c,ar:係数、 tr:(ts-tr)=2:1 で表され、この近似式を計算するためには、 最大すべり速度振幅 Vm 最大すべり速度到達時間 td ・ すべり速度振幅が 1/t^{1/2}に比例する Kostrov 型関数に移行する時間 tb ・ ライズタイム tr の4つのパラメータを与える必要がある。それぞれのパラメータの設定方法は以下の通りである。 最大すべり速度振幅 Vm $Vm = \Delta \sigma \cdot (2 \cdot fc \cdot w \cdot Vr)^{1/2} / \mu$ (15) fc: ローパスフィルタのコーナー周波数(fmax と同等) w:断層幅 Vr:破壊伝播速度 ※(5) で fmax を想定していない場合には、便宜的に fmax=10Hz と仮定して設定する。 最大すべり速度到達時間 td fmax $\approx 1/(\pi \cdot td)$ ——— —— (16) すべり速度振幅が 1/t^{1/2}に比例する Kostrov 型関数に移行する時間 tb (14)式で最終すべり量を与えることにより自動的に与えることができる。 ・ ライズタイム tr $tr \doteq w/(2 \cdot Vr)$ - (17) 1-3 その他の震源特性 その他の微視的震源特性のパラメータとして、 · 平均破壊伝播速度 · 破壞開始点 • 破壞形態

を設定する。

(1) 破壊伝播速度

破壊伝播速度 Vr(km/s)は、特にその震源域の詳しい情報がない限り、Geller(1976)による地震発生層のS波速度 Vs(km/s) との経験式

により推定する。

(2)破壊開始点

破壊開始点の位置については、過去の地震の破壊開始点が把握されている場合にはその位置に設 定するのが妥当である。また、菊地・山中(2001)によれば、破壊の進む方向に地域性があり、三陸 沖では浅い方から深い方へ、逆に南海トラフでは深い方から浅い方へ破壊が進む傾向があるため、 今後こうした傾向が様々な海域で明らかになれば、過去の地震の状況が不明な震源域であっても、 地域性を考慮した設定を行うことが可能である。

(3)破壊形態

破壊開始点から放射状に割れていくものとし、異なる断層セグメント間では、最も早く破壊が到 達する地点から破壊が放射状に伝播していくと仮定する。

2. 地下構造モデル

詳細な強震動評価における地下構造モデルの主なパラメータとしては、密度、P・S波速度、層厚 (形状)、減衰特性があり、対象を地震波の伝播経路となる上部マントルから地震基盤(Vs=3000m/s 相当層)までの大構造、地震波の長周期成分の増幅に影響を与える地震基盤から工学的基盤 (Vs=300m/s~700m/s 相当層)までの地盤構造(以下、深い地盤構造と呼ぶ)、地震波の短周期成分の 増幅に影響を与える工学的基盤から地表までの地盤構造(以下、浅い地盤構造と呼ぶ)の3つに分け て設定を行う。以下では、それぞれの設定手法について、その考え方を説明する。

2-1 上部マントルから地震基盤までの大構造

上部マントルから地震基盤までの大構造は、強震動インバージョンで用いた構造や大規模屈折法弾 性波探査の結果や震源決定に使われている構造モデルを参照して設定を行う。

2-2 深い地盤構造

深い地盤構造のデータとしては、深層ボーリング、屈折法・反射法弾性波探査、微動探査、重力探 査などのデータがあり、これらのデータに基づき、地域の深い地盤構造の三次元モデルを作成する必 要がある。しかしながら、これらのデータは地域によってデータの多寡があり、その状況に応じて設 定する方法は異なってくる。そこで、以下ではデータ量に応じたケースごとに設定方法の考え方につ いて説明する。

(1) 深い地盤構造のデータが十分に揃っている場合

一般的には、複数本の深部ボーリングで速度構造を正確に把握し、二次元的な広域的な形状は屈折 法、平野部等の詳細な形状は反射法で推定し、屈折法・反射法探査の情報のないところでは複数地点 での微動アレー探査や重力探査で補足・補正を行うことによって、全体の三次元地下構造モデルを作 成する。さらに、地下構造モデルの検証のため、中小地震の震源モデルを用いて強震動予測を行い、 観測記録と比較し、その違いが顕著であれば、観測記録を説明できるように地下構造モデルを修正す ることにより精度の高い三次元地下構造モデルを作成することができる。

(2) 深い地盤構造のデータが一部揃っている場合

重力探査のデータは全国的に面的なデータが揃っているため、このデータを基に他の探査データを 利用して三次元地下構造モデルを作成する。作成にあたっては、対象とする地域において過去の堆積 環境が概ね一様と想定されるケース、過去の堆積環境が区域によってかなり変化していると想定され るケースに場合分けを行い、それぞれ以下に示す手順で設定を行う。

〇過去の堆積環境が概ね一様と想定されるケース

- ① 重力探査データより地震基盤以浅の地盤構造に起因する残差重力分布を抽出する。
- ② 他の探査データを参照して、想定する地域の地震基盤以浅の主要な地層の構成を設定する。
- ③ 「堆積環境が概ね一様な堆積平野(または堆積盆地)においては、残差重力値と②で設定した各 地層の層厚とが概ね比例配分の関係にある」と仮定し、その地域のいくつかの深層ボーリングデ ータや微動探査のデータを基に各地層の深度と残差重力値との相関関係を導く。
- ④ ③の相関関係を基に①で推定されている残差重力分布から各地層の深度を推定し、三次元地下構造モデルを作成する。

〇過去の堆積環境が区域によってかなり変化していると想定されるケース

- ① 重力探査データより地震基盤以浅の地盤構造に起因する残差重力分布を抽出する。
- ② 既存の地質断面図や屈折法・反射法の探査データを参照して、想定する地域を平行に横断する複数の地質断面を想定する。
- ③ ②の地質断面から二次元密度構造モデルを作成し、残差重力値の計算を行う。
- ④ ③の残差重力値と重力探査から得られている残差重力値とを比較し、二次元密度構造モデルの修 正を繰り返しながら、最終的に重力探査から得られている残差重力値をできるだけ再現する密度 構造モデルを作成する。
- ⑤ ④で作成された複数の二次元密度構造モデルの断面を用い、各断面間の密度層境界面の幾何学的 対応関係(連続性、生成消滅関係)に基づき各断面間を補間することによって、その地域の三次 元地下構造モデルを作成する。

(3) 深い地盤構造のデータが重力探査データ以外ほとんど揃っていない場合

この場合については、波形のモデリングに有用な三次元地下構造モデルの作成が困難なことより、 詳細な強震動評価を行うことは難しい。したがって、強震動計算方法としては、後述する経験的方法 や半経験的方法を用いることになる。

2-3 浅い地盤構造

浅い地盤構造のモデルは、表層地質データや地盤調査に利用されている工学的なボーリングを収集 して一次元地盤構造モデルを作成するのが基本である。しかしながら、浅い地盤構造は水平方向に局 所的に大きく変化することが稀ではなく、面的に精度よく詳細なモデルを作成するためには膨大なデ ータの収集を必要とし、多くの労力を要する。そのため、面的に浅い地盤構造を評価するにはあたっ ては、国土数値情報などを基に経験的な方法を用いた近似的なモデル化も考案されている。以下に浅 い地盤構造の面的な評価によるモデル化の方法とボーリングデータによるモデル化の方法の考え方に ついて説明する。

(1) 面的な評価によるモデル化の方法

面的な評価によるモデル化の方法としては、以下に説明する松岡・翠川(1994)による国土数値情報 を利用した方法が代表的である。

1)全国を網羅した約1km四方の領域ごとの国土数値情報のうち、地形区分データや標高データ等 を利用して、新たに微地形区分データを作成する。

2)その区分ごとに次式に示す標高と表層 30m の平均S波速度との経験的関係をあてはめる。

 $\log AVS = a + b \cdot \log H + c \cdot \log Dist \pm \sigma$ (19) AVS: 表層 30m の平均S波速度(m/s)

レシピ-7

H:標高(m) Dist:主要河川からの距離(km)

σ:標準偏差 a,b,c:微地形区分ごとに与えられる回帰係数

(但し、この経験的関係は、主に関東地方のデータを基に作成されたものであり、全国の地盤に 適用するにあたっては、地域別に新たに経験的関係を作成するのが望ましい。)

3) 表層 30m の平均S波速度は工学的基盤から地表への地震波形の最大速度の増幅率と良い相関 があり、次式に示す関係式より最大速度の増幅率を算定する。

 $\log R = 1.83 - 0.66 \cdot \log AVS \pm 0.16$ (20)

R:平均S波速度 600m/sの基盤を基準とした増幅率

この方法を用いれば、比較的簡便に全国を約1km四方の領域ごとに浅い地盤構造による最大速度の増幅率を直接モデル化することができる。

(2) ボーリングデータによるモデル化の方法

ボーリングデータによるモデル化の方法は、密度、P・S波速度、層厚、減衰特性の一次元地盤構 造モデルの設定を行う。さらに、浅い地盤は大地震により大きなひずみを受けると非線形な挙動を示 すことから、非線形性を表すパラメータも設定を行う必要がある。この地盤の動的特性についても、 土質試験で調査しておくことが望ましいが、土質試験結果が得られない場合には土質に応じて平均的 なモデルを設定する。

この方法は、一般的にボーリングの存在する地点でのみ評価可能となるが、面的に評価するにあた っては、多数のボーリングデータを収集し、整理して領域ごとに代表的な柱状図を設定することもあ る。

3. 強震動計算方法

強震動計算方法は、地盤のモデル化や入力条件の違いから工学的基盤上面までの計算方法と工学的 基盤上面~地表の計算方法では異なるため、それぞれについて説明する。

(1) 工学的基盤上面までの計算方法

工学的基盤上面までの強震動計算手法は、経験的方法、半経験的手法、理論的手法、ハイブリッド 合成法の4つに大きく分類され、データの多寡・目的に応じて手法が選択されている[例えば、香川・ 他(1998)]。それぞれの手法の特徴を述べると、以下のようにまとめられる。

- 経験的方法-過去のデータを基に、最大加速度、最大速度、加速度応答スペクトル等の値をマグニ チュードと距離の関数で算定する方法。最も簡便。平均的な値で評価するため、破壊 過程の影響やアスペリティの影響は考慮できない。
- 半経験的な-既存の小地震の波形から大地震の波形を合成する方法で経験的グリーン関数法と統計
 方法 的グリーン関数法がある。経験的グリーン関数法は、想定する断層の震源域で発生した中小地震の波形を要素波(グリーン関数)として、想定する断層の破壊過程に応じて足し合わせる方法。時刻歴波形を予測でき、破壊の影響やアスペリティの影響を考慮できる。但し、予め評価地点で適当な観測波形が入手されている必要がある。
 統計的グリーン関数法は、多数の観測記録の平均的特性をもつ波形を要素波とする

ものである。評価地点で適当な観測波形を入手する必要はない。しかし、評価地点固有の特性に応じた震動特性が反映されにくい。時刻歴波形は経験的グリーン関数法と同様の方法で計算される。

理論的手法-数値理論計算により地震波形を計算する方法。時刻歴波形を予測でき、破壊の影響や アスペリティの影響を考慮できる。この手法では震源断層の不均質特性の影響を受け にくい長周期領域については評価しうるものの、破壊のランダム現象が卓越する短周 期領域については評価は困難となる。

ハイブリッー震源断層における現象のうち長周期領域を理論的手法、破壊のランダム現象が卓越

ド合成法 する短周期領域を半経験的手法でそれそれ計算し、両者を合成する方法。時刻歴波形 を予測でき、破壊の影響やアスペリティの影響を考慮できる。広帯域の評価が可能。

このうち、特性化震源モデルおよび詳細な地下構造モデルが利用可能な地域では、面的に強震動計算を行う方法として、半経験的方法である統計的グリーン関数法(例えば、釜江・他,1991)と理論的方法である有限差分法(例えば、Graves,1996; Pitarka,1999)を合わせたハイブリッド合成法(例えば、入倉・釜江,1999)がよく用いられる。

この理由としては、

・特性化震源モデルと三次元地盤構造モデルの影響を直接、地震波形に反映可能。

・面的な予測が可能。

・強震動評価の対象となる周期帯(0.1 秒~10 秒)に対応可能。

といった点であり、半経験的方法で統計的グリーン関数法を用いるのは面的な予測が容易であること (経験的グリーン関数法は基本的に波形が観測された地点でしか適用できないため)、理論的方法で 有限差分法を用いるのは、他の不整形な地盤構造のための計算方法(例えば、有限要素法、境界要素 法等)と比較して、大規模な地盤構造を取り扱う上で、大規模な数値演算を容易に行え、かつ計算時 間も早いという利点があるからである。ただし、水平多層構造で想定可能な地域があれば、理論的方 法においては水平多層構造のみ適用可能な波数積分法(例えば、Hisada,1995)を用いる。この方法は 水平多層構造のグリーン関数の計算に最もよく用いられている方法であり、震源モデルおよび水平多 層構造モデルが妥当であれば、実体波や表面波をよく再現できることが多くの事例から確かめられて いる。

なお、ハイブリッド合成法における理論的方法と半経験的方法の接続周期は1秒付近とすることが 望ましい。これは、予備検討の結果、接続周期2秒では破壊の進行方向に応じた地震波の指向性が評 価できず、1秒では評価できることを確認したためである(地震調査委員会強震動評価部会,2001)。 したがって、理論的方法の計算し得る周期帯は計算機の記憶容量、計算領域および計算時間に依存す るが、なるべく1秒付近まで計算できるようにすることを優先させることが重要である。

一方、特性化震源モデルや詳細な地盤構造モデルが得られない地域では、経験的方法(例えば、司・ 翠川,1999)や統計的グリーン関数法を用いる。算定式のパラメータの設定には、地域性を取り入れ たことが望ましいが、十分なデータがなければ既存の式のパラメータをそのまま利用する。

(2) 地表面までの計算方法

地表面までの計算方法は、浅い地盤構造モデルが面的な評価によるモデル化の場合とボーリングデ ータによるモデル化の場合で異なるため、それぞれのケースについて説明する。

〇面的な評価によるモデル化の場合

工学的基盤における最大速度の値に微地形区分から想定される増幅率を掛け合わせることで地表の最大速度を算定する。

〇ボーリングデータによるモデル化の場合

工学的基盤における時刻歴波形を入力として、ボーリングデータによる詳細なモデルに基づいて、 一次元地震動応答計算を行い、地表の時刻歴波形を計算する。一次元地震動応答計算の方法としては、 主として、線形解析法(例えば、Haskell,1960)、等価線形解析法(例えば、Shnabel et al., 1972)、逐 次非線形解析法(例えば、吉田・東畑,1991)があり、それぞれに以下の特徴を持つ。

線形解析法

重複反射理論により計算を行うものである。土の非線形性を考慮していないため、大地震に

より非線形性が生じる場合には正しい結果が得られない。

等価線形解析法

重複反射理論を基に土の非線形特性を等価な線形の関係に置き換え、解析の間一定の材料特性を用いる方法である。ひずみレベルが大きくなると精度は低下する。どの程度のひずみレベルまで適用できるかは、必要とする精度や地盤条件にもよるが、一般的には0.1~1%までである。また、強い揺れにより液状化等が生じた場合には、正しい結果は得られない。

逐次非線形解析法

材料の非線形特性を数学モデルや力学モデルで表現し、材料特性の変化を逐次計算しながら 挙動を求めようとする方法である。したがって、1%を超える大きなひずみレベルでも適用範 囲となる。その一方で、設定すべきパラメータが多く、専門的な知識を持って解析にあたる ことが重要である。

広域の地震動分布の算出には、今までは等価線形法が多く用いられてきた。この理由は、等価線形 法がパラメータも少なく利用しやすいこと、求められた地震動分布(震度、加速度)が既往の被害地 震の地震動分布を大局的に説明できたことなどが考えられる。逐次非線形解析は、今までは観測波形 の検証や液状化した地盤の過剰間隙水圧の上昇やひずみの増大などをみるために、検討対象地点ごと に利用されてきたことが多く、広域の地震動評価に使われた例は極めて少ない。また、採用する応力 ーひずみ関係式やそれに用いるパラメータの設定など専門的な判断をもって個々の解析を行うこと が必要であるなど、逐次非線形解析による広域地震動算出への課題は多い。このようなことから、逐 次非線形解析を広域の地震動評価に用いることは緒についたばかりで、まだ検討の必要があると考え られる。

以上のことから、ここではボーリングデータによる地表の地震動評価における計算方法としては、 等価線形法を中心に検討を行うこととした。

4. 予測結果の検証

海溝型地震は活断層で発生する地震と比較して活動間隔が短いために、最新活動による地震の被害 情報や観測情報が残されていることが多い。したがって、その情報と過去の地震を想定した強震動予 測結果を比較することで、強震動評価の検証および震源特性などの見直しが可能となる。検証の項目 としては、以下のものが挙げられる。

(1) 震度分布

現在、面的に強震動評価を検証するにあたってもっともよく使われる指標である。震度分布として、 明治以降の観測情報はそのまま利用することができる。また、江戸時代以降に発生した地震について は被害情報が比較的整っていることより、それら被害情報から震度分布が推定されている。

震度分布による検証は、震源特性パラメータを設定する比較的早い段階で経験的方法や半経験的方法を用いて行われる。この震度分布と計算結果があわない場合は、主に巨視的震源特性の見直しを行う。

(2) 観測波形記録

1960年代以降から、強震記録が取れはじめているため、1968年十勝沖地震以降の海溝型地震を想 定する場合には、強震動予測結果の時刻歴波形と観測記録を比較し、検証することが可能となる。観 測記録との比較において、計算波形をどの程度まであわせる必要があるかという点については、観測 波形の質、震源についてのそのほかの情報の多寡等によりケースごとに異なる。現状の多くの場合で は、位相を含めて精度良く合わせることは大変困難であり、振幅スペクトルがある程度説明できるこ とをもって検証と位置付けている。 計算結果を観測波形にあわせるためには、微視的震源特性や地下構造モデルについて検討しなおす ことが必要となる。(ただし、強震動評価の目的は計算波形を観測波形にあわせることではないため、 この波形あわせに終始することのないよう留意する必要がある。)

(3) 距離減衰式との比較

観測波形や震度分布が得られていない地震を想定した場合には、既存の距離減衰式を用いて検証を 行う。半経験的な方法や理論的方法による計算結果と既存の距離減衰式とを比較し、計算結果が距離 減衰式のばらつきの範囲内にあることを確認する。また距離減衰式と比較して大きく異なる値を示す ところについて、地下構造モデル、震源特性、地域性によりそれが説明できるか検討する。

計算結果の特異性を地下構造モデル、震源特性、地域性では説明できない場合、計算手法や震源の 特性化などについて見直しが必要となる。

- Boatwright, J. (1988): The seismic radiation from composite models of faulting, Bull. Seism. Soc. Am., 78, 489-508.
- 壇一男・渡辺基史・佐藤俊明・石井透(2001):断層の非一様すべり破壊モデルから算定される短周期 レベルと半経験的波形合成法による強震動予測のための震源断層のモデル化,日本建築学会構造系論 文集,545,51-62.
- Eshelby, J.D. (1957): The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc., A241, 376-396.
- Geller, R.J.(1976):Scaling relations for earthquake source parameters and magnitudes, Bull. Seism. Soc. Am, 66, 1501-1523.
- Graves, W. Robert (1996): Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bull. Seis. Soc. Am., 86, 1091-1106.
- Haskell, N. A.(1960) : Crustal reflection of plane SH waves, J. Geophys. Res., 65, 4147-4150.
- Hisada, Y. (1995): An efficient method for computing Green's functions for a layered half-space with sources and receivers at close depth (part2),Bull. Seis. Soc. Am., 85, 1080-1093.
- 石井透, 佐藤俊明, Paul G. Somerville(2000): 強震動評価のための不均質断層モデルの主破壊領域の 抽出, 日本建築学会構造系論文集, 527, 61-70.
- 入倉孝次郎・釜江克宏(1999):1948年福井地震の強震動,地震2,52,129-150.
- 入倉孝次郎・三宅弘恵・岩田知孝・釜江克宏・川辺秀憲(2002): 強震動予測のための修正レシピとその検証, 第11回日本地震工学シンポジウム論文集, 567-572.
- Iwata, T., H. Sekiguchi, and K. Miyakoshi (2001), Characterization of source processes of recent destructive earthquake inverted from strong motion records in the dense network, Proceedings of US-Japan Joint Workshop and third grantees meeting for US-Japan Cooperative Research on Urban Earthquake Disaster Mitigation, Aug. 2001, 53-59.
- 地震調査委員会強震動評価部会(2001):糸魚川・静岡構造線断層帯(北部、中部)を起震断層と想定し た強震動評価手法(中間報告).
- 香川敬生・入倉孝次郎・武村雅之(1998): 強震動予測の現状と将来の展望, 地震2, 51, 339-354.
- 釜江克宏・入倉孝次郎・福知保長(1991): 地震のスケーリング則に基づいた大地震時の強震動予測: 統計的波形合成法による予測,日本建築学会構造系論文集,430,1-9.
- Kanamori, H. and D. L. Anderson (1975): Theoretical basis of some empirical relations in seismology, Bull. Seism. Soc. Am., 65, 1073-1095.
- 菊地正幸・山中佳子(2001):『既往大地震の破壊過程=アスペリティの同定』,サイスモ,5(7),6-7.
- 松岡昌志・翠川三郎(1994):国土数値情報とサイスミックマイクロゾーニング,第22回地盤震動シン ポジウム資料集,23-34.
- 宮腰研・関口春子・岩田知孝(2001): すべりの空間的不均質性の抽出,平成12年度科学振興調整費 地震災害軽減のための強震動予測マスターモデルに関する研究研究成果報告書, 99-109.
- 中村洋光・宮武隆(2000):断層近傍強震動シミュレーションのための滑り速度時間関数の近似式,地 震2,53,1-9.
- Pitarka, A. (1999): 3D Elastic Finite-Difference Modeling of Seismic Motion Using Staggered Grids with Nonuniform Spacing, Bull. Seism. Soc. Am., 89, 54-68.
- 佐藤良輔編著(1989):日本の地震断層パラメータ・ハンドブック,鹿島出版会.
- Shnabel, P.B., Lysmer, J. and Seed, H. B. (1972): SHAKE, a computer program for earthquake response analysis of horizontally layered sites, Report No. EERC 72-12, University of California, Berkeley.

司宏俊・翠川三郎(1999):断層タイプ及び地盤条件を考慮した最大加速度・最大速度の距離減衰式, 日本建築学会構造系論文集,第523号,63-70.

宇津徳治(2001):『地震学第3版』,共立出版.

Yamanaka, Y. and K. Shimazaki (1990): Scaling relationship between the number of aftershocks and the size of the main shock, J. Phys. Earth, 38, 305-324.

吉田望・東畑郁生(1991): YUSAYUSA-2 理論と使用方法.